748 research outputs found

    New noise-tolerant neural algorithms for future dynamic nonlinear optimization with estimation on hessian matrix inversion

    Get PDF
    Nonlinear optimization problems with dynamical parameters are widely arising in many practical scientific and engineering applications, and various computational models are presented for solving them under the hypothesis of short-time invariance. To eliminate the large lagging error in the solution of the inherently dynamic nonlinear optimization problem, the only way is to estimate the future unknown information by using the present and previous data during the solving process, which is termed the future dynamic nonlinear optimization (FDNO) problem. In this paper, to suppress noises and improve the accuracy in solving FDNO problems, a novel noise-tolerant neural (NTN) algorithm based on zeroing neural dynamics is proposed and investigated. In addition, for reducing algorithm complexity, the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is employed to eliminate the intensively computational burden for matrix inversion, termed NTN-BFGS algorithm. Moreover, theoretical analyses are conducted, which show that the proposed algorithms are able to globally converge to a tiny error bound with or without the pollution of noises. Finally, numerical experiments are conducted to validate the superiority of the proposed NTN and NTN-BFGS algorithms for the online solution of FDNO problems

    Discrete-time zeroing neural network for solving time-varying Sylvester-transpose matrix inequation via exp-aided conversion

    Get PDF
    Time-varying linear matrix equations and inequations have been widely studied in recent years. Time-varying Sylvester-transpose matrix inequation, which is an important variant, has not been fully investigated. Solving the time-varying problem in a constructive manner remains a challenge. This study considers an exp-aided conversion from time-varying linear matrix inequations to equations to solve the intractable problem. On the basis of zeroing neural network (ZNN) method, a continuous-time zeroing neural network (CTZNN) model is derived with the help of Kronecker product and vectorization technique. The convergence property of the model is analyzed. Two discrete-time ZNN models are obtained with the theoretical analyses of truncation error by using two Zhang et al.’s discretization (ZeaD) formulas with different precision to discretize the CTZNN model. The comparative numerical experiments are conducted for two discrete-time ZNN models, and the corresponding numerical results substantiate the convergence and effectiveness of two ZNN discrete-time models

    Active Sensing of Robot Arms Based on Zeroing Neural Networks: A Biological-Heuristic Optimization Model

    Get PDF
    Conventional biological-heuristic solutions via zeroing neural network (ZNN) models have achieved preliminary efficiency on time-dependent nonlinear optimization problems handling. However, the investigation on finding a feasible ZNN model to solve the time-dependent nonlinear optimization problems with both inequality and equality constraints still remains stagnant because of the nonlinearity and complexity. To make new progresses on the ZNN for time-dependent nonlinear optimization problems solving, this paper proposes a biological-heuristic optimization model, i.e., inequality and equality constrained optimization ZNN (IECO-ZNN). Such a proposed IECO-ZNN breaks the conditionality that the solutions via ZNN for solving nonlinear optimization problems can not consider the inequality and equality constraints at the same time. The time-dependent nonlinear optimization problem subject to inequality and equality constraints is skillfully converted to a time-dependent equality system by exploiting the Lagrange multiplier rule. The design process for the IECO-ZNN model is presented together with its new architecture illustrated in details. In addition, the conversion equivalence, global stability as well as exponential convergence property are theoretically proven. Moreover, numerical studies, real-world applications to robot arm active sensing, and comparisons sufficiently verify the effectiveness and superiority of the proposed IECO-ZNN model for the time-dependent nonlinear optimization with inequality and equality constraints

    Correct-By-Construction Control Synthesis for Systems with Disturbance and Uncertainty

    Full text link
    This dissertation focuses on correct-by-construction control synthesis for Cyber-Physical Systems (CPS) under model uncertainty and disturbance. CPSs are systems that interact with the physical world and perform complicated dynamic tasks where safety is often the overriding factor. Correct-by-construction control synthesis is a concept that provides formal performance guarantees to closed-loop systems by rigorous mathematic reasoning. Since CPSs interact with the environment, disturbance and modeling uncertainty are critical to the success of the control synthesis. Disturbance and uncertainty may come from a variety of sources, such as exogenous disturbance, the disturbance caused by co-existing controllers and modeling uncertainty. To better accommodate the different types of disturbance and uncertainty, the verification and control synthesis methods must be chosen accordingly. Four approaches are included in this dissertation. First, to deal with exogenous disturbance, a polar algorithm is developed to compute an avoidable set for obstacle avoidance. Second, a supervised learning based method is proposed to design a good student controller that has safety built-in and rarely triggers the intervention of the supervisory controller, thus targeting the design of the student controller. Third, to deal with the disturbance caused by co-existing controllers, a Lyapunov verification method is proposed to formally verify the safety of coexisting controllers while respecting the confidentiality requirement. Finally, a data-driven approach is proposed to deal with model uncertainty. A minimal robust control invariant set is computed for an uncertain dynamic system without a given model by first identifying the set of admissible models and then simultaneously computing the invariant set while selecting the optimal model. The proposed methods are applicable to many real-world applications and reflect the notion of using the structure of the system to achieve performance guarantees without being overly conservative.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145933/1/chenyx_1.pd

    Proposing, developing and verification of a novel discrete-time zeroing neural network for solving future augmented Sylvester matrix equation

    Get PDF
    In this paper, a novel discrete-time advance zeroing neural network (DT-AZNN) model is proposed, developed and investigated for solving future augmented Sylvester matrix equation (F-ASME). First of all, based on the advance zeroing neural network (AZNN) design formula, a novel continuous-time advance zeroing neural network (CT-AZNN) model is shown for solving continuous-time augmented Sylvester matrix equation (CT-ASME). Secondly, a recently published discretization formula is further investigated with the optimal sampling gap of the discretization formula proposed. Then, for solving F-ASME, a novel DT-AZNN model is proposed based on the discretization formula. Theoretical analyses on the convergence property and the perturbation suppression performance of the DT-AZNN model are provided. Moreover, comparative numerical experimental results are conducted to prove the effectiveness and robustness of the proposed DT-AZNN model for solving F-ASME

    Complex Noise-Resistant Zeroing Neural Network for Computing Complex Time-Dependent Lyapunov Equation

    Get PDF
    Complex time-dependent Lyapunov equation (CTDLE), as an important means of stability analysis of control systems, has been extensively employed in mathematics and engineering application fields. Recursive neural networks (RNNs) have been reported as an effective method for solving CTDLE. In the previous work, zeroing neural networks (ZNNs) have been established to find the accurate solution of time-dependent Lyapunov equation (TDLE) in the noise-free conditions. However, noises are inevitable in the actual implementation process. In order to suppress the interference of various noises in practical applications, in this paper, a complex noise-resistant ZNN (CNRZNN) model is proposed and employed for the CTDLE solution. Additionally, the convergence and robustness of the CNRZNN model are analyzed and proved theoretically. For verification and comparison, three experiments and the existing noise-tolerant ZNN (NTZNN) model are introduced to investigate the effectiveness, convergence and robustness of the CNRZNN model. Compared with the NTZNN model, the CNRZNN model has more generality and stronger robustness. Specifically, the NTZNN model is a special form of the CNRZNN model, and the residual error of CNRZNN can converge rapidly and stably to order 10−5 when solving CTDLE under complex linear noises, which is much lower than order 10−1 of the NTZNN model. Analogously, under complex quadratic noises, the residual error of the CNRZNN model can converge to 2∥A∥F/ζ3 quickly and stably, while the residual error of the NTZNN model is divergent

    Sinc-Galerkin estimation of diffusivity in parabolic problems

    Get PDF
    A fully Sinc-Galerkin method for the numerical recovery of spatially varying diffusion coefficients in linear partial differential equations is presented. Because the parameter recovery problems are inherently ill-posed, an output error criterion in conjunction with Tikhonov regularization is used to formulate them as infinite-dimensional minimization problems. The forward problems are discretized with a sinc basis in both the spatial and temporal domains thus yielding an approximate solution which displays an exponential convergence rate and is valid on the infinite time interval. The minimization problems are then solved via a quasi-Newton/trust region algorithm. The L-curve technique for determining an approximate value of the regularization parameter is briefly discussed, and numerical examples are given which show the applicability of the method both for problems with noise-free data as well as for those whose data contains white noise

    Identification and Adaptive Control for High-performance AC Drive Systems.

    Full text link
    High-performance AC machinery and drive systems can be found in a variety of applications ranging from motion control to vehicle propulsion. However, machine parameters can vary significantly with electrical frequency, flux levels, and temperature, degrading the performance of the drive system. While adaptive control techniques can be used to estimate machine parameters online, it is sometimes desirable to estimate certain parameters offline. Additionally, parameter identification and control are typically conflicting objectives with identification requiring plant inputs which are rich in harmonics, and control objectives often consisting of regulation to a constant set-point. In this dissertation, we present research which seeks to address these issues for high-performance AC machinery and drive systems. The first part of this dissertation concerns the offline identification of induction machine parameters. Specifically, we have developed a new technique for induction machine parameter identification which can easily be implemented using a voltage-source inverter. The proposed technique is based on fitting steady-state experimental data to the circular stator current locus in the stator flux linkage reference-frame for varying steady-state slip frequencies, and provides accurate estimates of the magnetic parameters, as well as the rotor resistance and core loss conductance. Experimental results for a 43 kW induction machine are provided which demonstrate the utility of the proposed technique by characterizing the machine over a wide range of flux levels, including magnetic saturation. The remainder of this dissertation concerns the development of generalizable design methodologies for Simultaneous Identification and Control (SIC) of overactuated systems via case studies with Permanent Magnet Synchronous Machines (PMSMs). Specifically, we present different approaches to the design of adaptive controllers for PMSMs which exploit overactuation to achieve identification and control objectives simultaneously. The first approach utilizes a disturbance decoupling control law to prevent the excitation input from perturbing the regulated output. The second approach uses a Lyapunov-based adaptive controller to constrain the states to the output error-zeroing manifold on which they are varied to provide excitation for parameter identification. Finally, a receding-horizon control allocation approach is presented which includes a metric for generating persistently exciting reference trajectories.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120862/1/davereed_1.pd
    • …
    corecore