14,864 research outputs found

    General Fast Sampling Theorems for Nonlinear Systems

    No full text
    This paper is concerned with the gap metric approach to controller discretisation problems for continuous-time nonlinear systems with disturbances in both input and output channels. The principal idea is to construct a discrete controller based on a given stabilizing continuous time controller via a fast sampling and hold procedure and to calculate the gap between the two controllers. It is expected that, under general conditions, the computed gap depends on the discrete sample size and the faster the sample rate, the smaller the gap and, therefore, existing gap metric robust stability theorems can be applied to obtain both stability and performance results for the appropriately discretised controller. This is shown for the case of memoryless controllers and for a more general class of controllers specified by stable, causal operators. In both cases, both regional and global results are obtained under respective local and global incremental stability assumptions on the controllers

    Analytical results for the multi-objective design of model-predictive control

    Full text link
    In model-predictive control (MPC), achieving the best closed-loop performance under a given computational resource is the underlying design consideration. This paper analyzes the MPC design problem with control performance and required computational resource as competing design objectives. The proposed multi-objective design of MPC (MOD-MPC) approach extends current methods that treat control performance and the computational resource separately -- often with the latter as a fixed constraint -- which requires the implementation hardware to be known a priori. The proposed approach focuses on the tuning of structural MPC parameters, namely sampling time and prediction horizon length, to produce a set of optimal choices available to the practitioner. The posed design problem is then analyzed to reveal key properties, including smoothness of the design objectives and parameter bounds, and establish certain validated guarantees. Founded on these properties, necessary and sufficient conditions for an effective and efficient solver are presented, leading to a specialized multi-objective optimizer for the MOD-MPC being proposed. Finally, two real-world control problems are used to illustrate the results of the design approach and importance of the developed conditions for an effective solver of the MOD-MPC problem

    How the instability of ranks under long memory affects large-sample inference

    Full text link
    Under long memory, the limit theorems for normalized sums of random variables typically involve a positive integer called "Hermite rank". There is a different limit for each Hermite rank. From a statistical point of view, however, we argue that a rank other than one is unstable, whereas, a rank equal to one is stable. We provide empirical evidence supporting this argument. This has important consequences. Assuming a higher-order rank when it is not really there usually results in underestimating the order of the fluctuations of the statistic of interest. We illustrate this through various examples involving the sample variance, the empirical processes and the Whittle estimator.Accepted manuscrip

    How the instability of ranks under long memory affects large-sample inference

    Full text link
    Under long memory, the limit theorems for normalized sums of random variables typically involve a positive integer called "Hermite rank". There is a different limit for each Hermite rank. From a statistical point of view, however, we argue that a rank other than one is unstable, whereas, a rank equal to one is stable. We provide empirical evidence supporting this argument. This has important consequences. Assuming a higher-order rank when it is not really there usually results in underestimating the order of the fluctuations of the statistic of interest. We illustrate this through various examples involving the sample variance, the empirical processes and the Whittle estimator.Accepted manuscrip

    Localization for MCMC: sampling high-dimensional posterior distributions with local structure

    Get PDF
    We investigate how ideas from covariance localization in numerical weather prediction can be used in Markov chain Monte Carlo (MCMC) sampling of high-dimensional posterior distributions arising in Bayesian inverse problems. To localize an inverse problem is to enforce an anticipated "local" structure by (i) neglecting small off-diagonal elements of the prior precision and covariance matrices; and (ii) restricting the influence of observations to their neighborhood. For linear problems we can specify the conditions under which posterior moments of the localized problem are close to those of the original problem. We explain physical interpretations of our assumptions about local structure and discuss the notion of high dimensionality in local problems, which is different from the usual notion of high dimensionality in function space MCMC. The Gibbs sampler is a natural choice of MCMC algorithm for localized inverse problems and we demonstrate that its convergence rate is independent of dimension for localized linear problems. Nonlinear problems can also be tackled efficiently by localization and, as a simple illustration of these ideas, we present a localized Metropolis-within-Gibbs sampler. Several linear and nonlinear numerical examples illustrate localization in the context of MCMC samplers for inverse problems.Comment: 33 pages, 5 figure
    • …
    corecore