24 research outputs found

    The electronically steerable parasitic array radiator antenna for wireless communications : signal processing and emerging techniques

    Get PDF
    Smart antenna technology is expected to play an important role in future wireless communication networks in order to use the spectrum efficiently, improve the quality of service, reduce the costs of establishing new wireless paradigms and reduce the energy consumption in wireless networks. Generally, smart antennas exploit multiple widely spaced active elements, which are connected to separate radio frequency (RF) chains. Therefore, they are only applicable to base stations (BSs) and access points, by contrast with modern compact wireless terminals with constraints on size, power and complexity. This dissertation considers an alternative smart antenna system the electronically steerable parasitic array radiator (ESPAR) which uses only a single RF chain, coupled with multiple parasitic elements. The ESPAR antenna is of significant interest because of its flexibility in beamforming by tuning a number of easy-to-implement reactance loads connected to parasitic elements; however, parasitic elements require no expensive RF circuits. This work concentrates on the study of the ESPAR antenna for compact transceivers in order to achieve some emerging techniques in wireless communications. The work begins by presenting the work principle and modeling of the ESPAR antenna and describes the reactance-domain signal processing that is suited to the single active antenna array, which are fundamental factors throughout this thesis. The major contribution in this chapter is the adaptive beamforming method based on the ESPAR antenna. In order to achieve fast convergent beamforming for the ESPAR antenna, a modified minimum variance distortionless response (MVDR) beamfomer is proposed. With reactance-domain signal processing, the ESPAR array obtains a correlation matrix of receive signals as the input to the MVDR optimization problem. To design a set of feasible reactance loads for a desired beampattern, the MVDR optimization problem is reformulated as a convex optimization problem constraining an optimized weight vector close to a feasible solution. Finally, the necessary reactance loads are optimized by iterating the convex problem and a simple projector. In addition, the generic algorithm-based beamforming method has also studied for the ESPAR antenna. Blind interference alignment (BIA) is a promising technique for providing an optimal degree of freedom in a multi-user, multiple-inputsingle-output broadcast channel, without the requirements of channel state information at the transmitters. Its key is antenna mode switching at the receive antenna. The ESPAR antenna is able to provide a practical solution to beampattern switching (one kind of antenna mode switching) for the implementation of BIA. In this chapter, three beamforming methods are proposed for providing the required number of beampatterns that are exploited across one super symbol for creating the channel fluctuation patterns seen by receivers. These manually created channel fluctuation patterns are jointly combined with the designed spacetime precoding in order to align the inter-user interference. Furthermore, the directional beampatterns designed in the ESPAR antenna are demonstrated to improve the performance of BIA by alleviating the noise amplification. The ESPAR antenna is studied as the solution to interference mitigation in small cell networks. Specifically, ESPARs analog beamforming presented in the previous chapter is exploited to suppress inter-cell interference for the system scenario, scheduling only one user to be served by each small BS at a single time. In addition, the ESPAR-based BIA is employed to mitigate both inter-cell and intracell interference for the system scenario, scheduling a small number of users to be simultaneously served by each small BS for a single time. In the cognitive radio (CR) paradigm, the ESPAR antenna is employed for spatial spectrum sensing in order to utilize the new angle dimension in the spectrum space besides the conventional frequency, time and space dimensions. The twostage spatial spectrum sensing method is proposed based on the ESPAR antenna being targeted at identifying white spectrum space, including the new angle dimension. At the first stage, the occupancy of a specific frequency band is detected by conventional spectrum-sensing methods, including energy detector and eigenvalue-based methods implemented with the switched-beam ESPAR antenna. With the presence of primary users, their directions are estimated at the second stage, by high-resolution angle-of-arrival (AoA) estimation algorithms. Specifically, the compressive sensing technology has been studied for AoA detection with the ESPAR antenna, which is demonstrated to provide high-resolution estimation results and even to outperform the reactance-domain multiple signal classification

    MIMO Communication Using Single Feed Antenna Arrays

    Get PDF

    Multiple-Antenna Systems: From Generic to Hardware-Informed Precoding Designs

    Get PDF
    5G-and-beyond communication systems are expected to be in a heterogeneous form of multiple-antenna cellular base stations (BSs) overlaid with small cells. The fully-digital BS structures can incur significant power consumption and hardware complexity. Moreover, the wireless BSs for small cells usually have strict size constraints, which incur additional hardware effects such as mutual coupling (MC). Consequently, the transmission techniques designed for future wireless communication systems should respect the hardware structures at the BSs. For this reason, in this thesis we extend generic downlink precoding to more advanced hardware-informed transmission techniques for a variety of BS structures. This thesis firstly extends the vector perturbation (VP) precoding to multiple-modulation scenarios, where existing VP-based techniques are sub-optimal. Subsequently, this thesis focuses on the downlink transmission designs for hardware effects in the form of MC, limited number of radio frequency (RF) chains, and low-precision digital-to-analog converters (DACs). For these scenarios, existing precoding techniques are either sub-optimal or not directly applicable due to the specific hardware constraints. In this context, this thesis first proposes analog-digital (AD) precoding methods for MC exploitation in compact single-user multiple-antenna systems with the concept of constructive interference, and further extends the idea of MC exploitation to multi-user scenarios with a joint optimisation on the precoding matrix and the mutual coupling effect. We further consider precoding for wireless BSs with a limited number of RF chains, in the form of compact parasitic antenna array as well as hybrid analog-digital structures designed for large-scale multiple-antenna systems. In addition, with a reformulation of the constructive interference, this thesis also considers the low-complexity precoding design for the use of low-resolution DACs for a massive-antenna array at the BSs. Analytical and numerical results reveal an improved performance of the proposed techniques compared to the state-of-the-art approaches, which validates the effectiveness of the introduced methods

    Analog-Digital Beamforming in the MU-MISO Downlink by use of Tunable Antenna Loads

    Get PDF
    We investigate the performance of multi-user multiple-input-single-output (MU-MISO) downlink in the presence of the mutual coupling effect at the transmitter. Contrary to traditional approaches that aim at eliminating this effect, in this paper we propose a joint analog-digital (AD) beamforming scheme that exploits this effect to further improve the system performance. A jointly optimal AD beamformer is firstly obtained by iteratively maximizing the minimum received signal-to-interference-plus-noise ratio (SINR) in the digital domain, followed by an optimization on the load impedance of each antenna element in the analog domain. We further introduce a decoupled low-complexity approach, with which existing closed-form beamforming schemes can also be efficiently applied. For the consideration of hardware imperfections in practice, we study the case where the analog load values are quantized, and propose a sequential search scheme based on greedy algorithm to efficiently obtain the desired quantized load values. Moreover, we also investigate the imperfect channel state information (CSI) scenarios, where we prove the optimality for closed-form beamformers, and further propose the robust schemes for two typical CSI error models. Simulation results show that with the proposed schemes the mutual coupling effect can be exploited to further improve the performance for both perfect CSI and imperfect CSI

    Efficient Resource Allocation and Spectrum Utilisation in Licensed Shared Access Systems

    Get PDF

    Performance analysis of cellular and ad-hoc sensor networks : theory and applications

    Get PDF
    Fifth-generation (5G) mobile networks have three main goals namely enhanced mobile broadband (eMBB), massive machine-type communication (mMTC) and ultra-reliable low latency communication (URLLC). The performance measures associated with these goals are high peak throughput, high spectral efficiency, high capacity and mobility. Moreover, achieving ubiquitous coverage, network and device energy efficiency, ultra-high reliability and ultra-low latency are associated with the performance of 5G mobile networks. One of the challenges that arises during the analysis of these networks is the randomness of the number of nodes and their locations. Randomness is an inherent property of network topologies and could occur due to communication outage, node failure, blockage or mobility of the communication nodes. One of the tools that enable analysis of such random networks is stochastic geometry, including the point process theory. The stochastic geometry and Poisson point theory allow us to build upon tractable models and study the random networks, which is the main focus of this dissertation. In particular, we focus on the performance analysis of cellular heterogeneous networks (HetNet) and ad-hoc sensor networks. We derive closed-forms and easy-to-use expressions, characterising some of the crucial performance metrics of these networks. First, as a HetNet example, we consider a three-tier hybrid network, where microwave (µWave) links are used for the first two tiers and millimetre wave (mmWave) links for the last tier. Since HetNets are considered as interference-limited networks, therefore, we also propose to improve the coverage in HetNet by deploying directional antennas to mitigate interference. Moreover, we propose an optimisation framework for the overall area spectral and energy efficiency concerning the optimal signal-to-interference ratio (SIR) threshold required for µWave and mmWave links. Results indicate that for the µWave tiers (wireless backhaul) the optimal SIR threshold required depends only on the path-loss exponent and that for the mmWave tier depends on the area of line-of-sight (LOS) region. Furthermore, we consider the average rate under coverage and show that the area spectral and energy efficiency are strictly decreasing functions with respect to the SIR threshold. Second, in ad-hoc sensor networks, coverage probability is usually defined according to a fixed detection range ignoring interference and propagation effects. Hence, we define the coverage probability in terms of the probability of detection for localisability. To this end, we provide an analysis for the detection probability and S-Localisability probability, i.e. the probability that at least S sensors may successfully participate in the localisation procedure, according to the propagation effects such as path-loss and small-scale fading. Moreover, we analyse the effect of the number of sensors S on node localisation and compare different range based localisation algorithms

    Mimo Communication Systems with Reconfigurable Antennas

    Get PDF
    RÉSUMÉ Les antennes reconfigurables sont capables d'ajuster dynamiquement les caractéristiques de leur diagramme de rayonnement, par exemple, la forme, la direction et la polarisation, en réponse aux conditions environnementales et exigences du système. Ces antennes peuvent aussi être utilisées en conjonction avec des systèmes à entrées multiples sorties multiples (MIMO) pour améliorer davantage la capacité et la fiabilité des systèmes sans fil. Cette thèse étudie certains des problèmes dans les systèmes sans fil équipés d'antennes reconfigurables et propose des solutions pour améliorer la performance du système. Dans les systèmes sans fil utilisant des antennes reconfigurables, la performance atteignable par le système dépend fortement de la connaissance de la direction d'arrivée (DoA) des signaux souhaités et des interférences. Dans la première partie de cette thèse, nous proposons un nouvel algorithme d'estimation de la DoA pour les systèmes à entrer simple et sortie simple (SISO) qui possèdent un élément d'antenne reconfigurable au niveau du récepteur. Contrairement à un système utilisant un réseau d'antennes conventionnelles à diagramme de rayonnement fixe, où la DoA est estimée en utilisant les signaux reçus par plusieurs éléments, dans le réseau d'antennes avec l'algorithme proposé, la DoA est estimée en utilisant des signaux reçus d'un élément d'antenne unique pendant qu'il balai un ensemble de configurations de diagramme de rayonnement. Nous étudions aussi l'impact des différentes caractéristiques des diagrammes de rayonnement utilisés, tels que la largeur du faisceau de l'antenne et le nombre d'étapes de numérisation, sur l'exactitude de la DoA estimée. Dans la deuxième partie de cette thèse, nous proposons un système de MIMO faible complexité employant des antennes reconfigurables sur les canaux sélectifs en fréquence pour atténuer les êtes de trajets multiples et donc éliminer l'interférence entre symboles sans utiliser la technique de modulation multiplexage orthogonale fréquentiel (OFDM). Nous étudions aussi l'impact de la propagation et de l'antenne angulaire largeur de faisceau sur la performance du système proposé et faire la comparaison avec la performance du système MIMO-OFDM. Dans la troisième partie de cette thèse, nous fournissons des outils analytiques pour analyser la performance des systèmes sans _l MIMO équipés d'antennes reconfigurables au niveau du récepteur. Nous dérivons d'abord des expressions analytiques pour le calcul de la matrice de covariance des coefficients des signaux reçus empiétant sur un réseau d'antennes reconfigurables en tenant compte de plusieurs caractéristiques de l'antenne tels que la largeur du faisceau, l'espacement d'antenne, l'angle de pointage ainsi que le gain de l'antenne. Dans cette partie, nous considérons un récepteur MIMO reconfigurable où le diagramme de rayonnement de chaque élément d'antenne dans le réseau peut avoir des caractéristiques différentes. Nous étudions également la capacité d'un système MIMO reconfigurable en utilisant les expressions analytiques dérivées.----------ABSTRACT Reconfigurable antennas are able to dynamically adjust their radiation pattern characteristics, e.g., shape, direction and polarization, in response to environmental conditions and system requirements. These antennas can be used in conjunction with multiple-input multiple-output (MIMO) systems to further enhance the capacity and reliability of wireless networks. This dissertation studies some of the issues in wireless cellular systems equipped with reconfigurable antennas and offer solutions to enhance their performance. In wireless systems employing reconfigurable antennas, the attainable performance improvement highly depends on the knowledge of direction-of-arrival (DoA) of the desired source signals and that of the interferences. In the first part of this dissertation, we propose a novel DoA estimation algorithm for single-input single-output (SISO) system with a reconfigurable antenna element at the receiver. Unlike a conventional antenna array system with fixed radiation pattern where the DoA is estimated using the signals received by multiple elements, in the proposed algorithm, we estimate the DoA using signals collected from a set of radiation pattern states also called scanning steps. We, in addition, investigate the impact of different radiation pattern characteristics such as antenna beamwidth and number of scanning steps on the accuracy of the estimated DoA. In the second part of this dissertation, we propose a low-complexity MIMO system employing reconfigurable antennas over the frequency-selective channels to mitigate multipath effects and therefore remove inter symbol interference without using orthogonal frequency division multiplexing (OFDM) modulation. We study the impact of angular spread and antenna beamwidth on the performance of the proposed system and make comparisons with that of MIMO-OFDM system equipped with omnidirectional antennas. In the third part of this dissertation, we provide an analytical tool to analyze the performance of MIMO wireless systems equipped with reconfigurable antennas at the receiver. We first derive analytical expressions for computing the covariance matrix coefficients of the received signals impinging on a reconfigurable antenna array by taking into account several antenna characteristics such as beamwidth, antenna spacing, antenna pointing angle, and antenna gain. In this part, we consider a reconfigurable MIMO receiver where the radiation pattern of each antenna element in the array can have different characteristics. We, additionally, study the capacity of a reconfigurable MIMO system using the derived analytical expressions

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    corecore