176,935 research outputs found

    A QPTAS for the Base of the Number of Triangulations of a Planar Point Set

    Full text link
    The number of triangulations of a planar n point set is known to be cnc^n, where the base cc lies between 2.432.43 and 30.30. The fastest known algorithm for counting triangulations of a planar n point set runs in O(2n)O^*(2^n) time. The fastest known arbitrarily close approximation algorithm for the base of the number of triangulations of a planar n point set runs in time subexponential in n.n. We present the first quasi-polynomial approximation scheme for the base of the number of triangulations of a planar point set

    Estimating the Expected Value of Partial Perfect Information in Health Economic Evaluations using Integrated Nested Laplace Approximation

    Get PDF
    The Expected Value of Perfect Partial Information (EVPPI) is a decision-theoretic measure of the "cost" of parametric uncertainty in decision making used principally in health economic decision making. Despite this decision-theoretic grounding, the uptake of EVPPI calculations in practice has been slow. This is in part due to the prohibitive computational time required to estimate the EVPPI via Monte Carlo simulations. However, recent developments have demonstrated that the EVPPI can be estimated by non-parametric regression methods, which have significantly decreased the computation time required to approximate the EVPPI. Under certain circumstances, high-dimensional Gaussian Process regression is suggested, but this can still be prohibitively expensive. Applying fast computation methods developed in spatial statistics using Integrated Nested Laplace Approximations (INLA) and projecting from a high-dimensional into a low-dimensional input space allows us to decrease the computation time for fitting these high-dimensional Gaussian Processes, often substantially. We demonstrate that the EVPPI calculated using our method for Gaussian Process regression is in line with the standard Gaussian Process regression method and that despite the apparent methodological complexity of this new method, R functions are available in the package BCEA to implement it simply and efficiently

    Faster SDP hierarchy solvers for local rounding algorithms

    Full text link
    Convex relaxations based on different hierarchies of linear/semi-definite programs have been used recently to devise approximation algorithms for various optimization problems. The approximation guarantee of these algorithms improves with the number of {\em rounds} rr in the hierarchy, though the complexity of solving (or even writing down the solution for) the rr'th level program grows as nΩ(r)n^{\Omega(r)} where nn is the input size. In this work, we observe that many of these algorithms are based on {\em local} rounding procedures that only use a small part of the SDP solution (of size nO(1)2O(r)n^{O(1)} 2^{O(r)} instead of nΩ(r)n^{\Omega(r)}). We give an algorithm to find the requisite portion in time polynomial in its size. The challenge in achieving this is that the required portion of the solution is not fixed a priori but depends on other parts of the solution, sometimes in a complicated iterative manner. Our solver leads to nO(1)2O(r)n^{O(1)} 2^{O(r)} time algorithms to obtain the same guarantees in many cases as the earlier nO(r)n^{O(r)} time algorithms based on rr rounds of the Lasserre hierarchy. In particular, guarantees based on O(logn)O(\log n) rounds can be realized in polynomial time. We develop and describe our algorithm in a fairly general abstract framework. The main technical tool in our work, which might be of independent interest in convex optimization, is an efficient ellipsoid algorithm based separation oracle for convex programs that can output a {\em certificate of infeasibility with restricted support}. This is used in a recursive manner to find a sequence of consistent points in nested convex bodies that "fools" local rounding algorithms.Comment: 30 pages, 8 figure

    Efficient computation of partition of unity interpolants through a block-based searching technique

    Full text link
    In this paper we propose a new efficient interpolation tool, extremely suitable for large scattered data sets. The partition of unity method is used and performed by blending Radial Basis Functions (RBFs) as local approximants and using locally supported weight functions. In particular we present a new space-partitioning data structure based on a partition of the underlying generic domain in blocks. This approach allows us to examine only a reduced number of blocks in the search process of the nearest neighbour points, leading to an optimized searching routine. Complexity analysis and numerical experiments in two- and three-dimensional interpolation support our findings. Some applications to geometric modelling are also considered. Moreover, the associated software package written in \textsc{Matlab} is here discussed and made available to the scientific community

    Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making

    Full text link
    In multi-objective decision planning and learning, much attention is paid to producing optimal solution sets that contain an optimal policy for every possible user preference profile. We argue that the step that follows, i.e, determining which policy to execute by maximising the user's intrinsic utility function over this (possibly infinite) set, is under-studied. This paper aims to fill this gap. We build on previous work on Gaussian processes and pairwise comparisons for preference modelling, extend it to the multi-objective decision support scenario, and propose new ordered preference elicitation strategies based on ranking and clustering. Our main contribution is an in-depth evaluation of these strategies using computer and human-based experiments. We show that our proposed elicitation strategies outperform the currently used pairwise methods, and found that users prefer ranking most. Our experiments further show that utilising monotonicity information in GPs by using a linear prior mean at the start and virtual comparisons to the nadir and ideal points, increases performance. We demonstrate our decision support framework in a real-world study on traffic regulation, conducted with the city of Amsterdam.Comment: AAMAS 2018, Source code at https://github.com/lmzintgraf/gp_pref_elici
    corecore