148 research outputs found

    A hybrid interval type-2 semi-supervised possibilistic fuzzy c-means clustering and particle swarm optimization for satellite image analysis

    Get PDF
    Although satellite images can provide more information about the earth’s surface in a relatively short time and over a large scale, they are affected by observation conditions and the accuracy of the image acquisition equipment. The objects on the images are often not clear and uncertain, especially at their borders. The type-1 fuzzy set based fuzzy clustering technique allows each data pattern to belong to many different clusters through membership function (MF) values, which can handle data patterns with unclear and uncertain boundaries well. However, this technique is quite sensitive to noise, outliers, and limitations in handling uncertainties. To overcome these disadvantages, we propose a hybrid method encompassing interval type-2 semi-supervised possibilistic fuzzy c-means clustering (IT2SPFCM) and Particle Swarm Optimization (PSO) to form the proposed IT2SPFCM-PSO. We experimented on some satellite images to prove the effectiveness of the proposed method. Experimental results show that the IT2SPFCM-PSO algorithm gives accuracy from 98.8% to 99.39% and is higher than that of other matching algorithms including SFCM, SMKFCM, SIIT2FCM, PFCM, SPFCM-W, SPFCM-SS, and IT2SPFCM. Analysis of the results by indicators PC-I, CE-I, D-I, XB-I, t -I, and MSE also showed that the proposed method gives better results in most experiments

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    EGFC: Evolving Gaussian Fuzzy Classifier from Never-Ending Semi-Supervised Data Streams -- With Application to Power Quality Disturbance Detection and Classification

    Full text link
    Power-quality disturbances lead to several drawbacks such as limitation of the production capacity, increased line and equipment currents, and consequent ohmic losses; higher operating temperatures, premature faults, reduction of life expectancy of machines, malfunction of equipment, and unplanned outages. Real-time detection and classification of disturbances are deemed essential to industry standards. We propose an Evolving Gaussian Fuzzy Classification (EGFC) framework for semi-supervised disturbance detection and classification combined with a hybrid Hodrick-Prescott and Discrete-Fourier-Transform attribute-extraction method applied over a landmark window of voltage waveforms. Disturbances such as spikes, notching, harmonics, and oscillatory transient are considered. Different from other monitoring systems, which require offline training of models based on a limited amount of data and occurrences, the proposed online data-stream-based EGFC method is able to learn disturbance patterns autonomously from never-ending data streams by adapting the parameters and structure of a fuzzy rule base on the fly. Moreover, the fuzzy model obtained is linguistically interpretable, which improves model acceptability. We show encouraging classification results.Comment: 10 pages, 6 figures, 1 table, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020

    A generic framework for context-dependent fusion with application to landmine detection.

    Get PDF
    For complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be a viable alternative to using a single classifier. Over the past few years, a variety of schemes have been proposed for combining multiple classifiers. Most of these were global as they assign a degree of worthiness to each classifier, that is averaged over the entire training data. This may not be the optimal way to combine the different experts since the behavior of each one may not be uniform over the different regions of the feature space. To overcome this issue, few local methods have been proposed in the last few years. Local fusion methods aim to adapt the classifiers\u27 worthiness to different regions of the feature space. First, they partition the input samples. Then, they identify the best classifier for each partition and designate it as the expert for that partition. Unfortunately, current local methods are either computationally expensive and/or perform these two tasks independently of each other. However, feature space partition and algorithm selection are not independent and their optimization should be simultaneous. In this dissertation, we introduce a new local fusion approach, called Context Extraction for Local Fusion (CELF). CELF was designed to adapt the fusion to different regions of the feature space. It takes advantage of the strength of the different experts and overcome their limitations. First, we describe the baseline CELF algorithm. We formulate a novel objective function that combines context identification and multi-algorithm fusion criteria into a joint objective function. The context identification component thrives to partition the input feature space into different clusters (called contexts), while the fusion component thrives to learn the optimal fusion parameters within each cluster. Second, we propose several variations of CELF to deal with different applications scenario. In particular, we propose an extension that includes a feature discrimination component (CELF-FD). This version is advantageous when dealing with high dimensional feature spaces and/or when the number of features extracted by the individual algorithms varies significantly. CELF-CA is another extension of CELF that adds a regularization term to the objective function to introduce competition among the clusters and to find the optimal number of clusters in an unsupervised way. CELF-CA starts by partitioning the data into a large number of small clusters. As the algorithm progresses, adjacent clusters compete for data points, and clusters that lose the competition gradually become depleted and vanish. Third, we propose CELF-M that generalizes CELF to support multiple classes data sets. The baseline CELF and its extensions were formulated to use linear aggregation to combine the output of the different algorithms within each context. For some applications, this can be too restrictive and non-linear fusion may be needed. To address this potential drawback, we propose two other variations of CELF that use non-linear aggregation. The first one is based on Neural Networks (CELF-NN) and the second one is based on Fuzzy Integrals (CELF-FI). The latter one has the desirable property of assigning weights to subsets of classifiers to take into account the interaction between them. To test a new signature using CELF (or its variants), each algorithm would extract its set of features and assigns a confidence value. Then, the features are used to identify the best context, and the fusion parameters of this context are used to fuse the individual confidence values. For each variation of CELF, we formulate an objective function, derive the necessary conditions to optimize it, and construct an iterative algorithm. Then we use examples to illustrate the behavior of the algorithm, compare it to global fusion, and highlight its advantages. We apply our proposed fusion methods to the problem of landmine detection. We use data collected using Ground Penetration Radar (GPR) and Wideband Electro -Magnetic Induction (WEMI) sensors. We show that CELF (and its variants) can identify meaningful and coherent contexts (e.g. mines of same type, mines buried at the same site, etc.) and that different expert algorithms can be identified for the different contexts. In addition to the land mine detection application, we apply our approaches to semantic video indexing, image database categorization, and phoneme recognition. In all applications, we compare the performance of CELF with standard fusion methods, and show that our approach outperforms all these methods

    Multiple instance fuzzy inference.

    Get PDF
    A novel fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Fuzzy Inference Systems (MI-FIS). Fuzzy inference is a powerful modeling framework that can handle computing with knowledge uncertainty and measurement imprecision effectively. Fuzzy Inference performs a non-linear mapping from an input space to an output space by deriving conclusions from a set of fuzzy if-then rules and known facts. Rules can be identified from expert knowledge, or learned from data. In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. In this dissertation, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, different multiple instance fuzzy inference styles are proposed. The Multiple Instance Mamdani style fuzzy inference (MI-Mamdani) extends the standard Mamdani style inference to compute with multiple instances. The Multiple Instance Sugeno style fuzzy inference (MI-Sugeno) is an extension of the standard Sugeno style inference to handle reasoning with multiple instances. In addition to the MI-FIS inference styles, one of the main contributions of this work is an adaptive neuro-fuzzy architecture designed to handle bags of instances as input and capable of learning from ambiguously labeled data. The proposed architecture, called Multiple Instance-ANFIS (MI-ANFIS), extends the standard Adaptive Neuro Fuzzy Inference System (ANFIS). We also propose different methods to identify and learn fuzzy if-then rules in the context of MIL. In particular, a novel learning algorithm for MI-ANFIS is derived. The learning is achieved by using the backpropagation algorithm to identify the premise parameters and consequent parameters of the network. The proposed framework is tested and validated using synthetic and benchmark datasets suitable for MIL problems. Additionally, we apply the proposed Multiple Instance Inference to the problem of region-based image categorization as well as to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar

    Development of an integrated decision support system for supporting offshore oil spill response in harsh environments

    Get PDF
    Offshore oil spills can lead to significantly negative impacts on socio-economy and constitute a direct hazard to the marine environment and human health. The response to an oil spill usually consists of a series of dynamic, time-sensitive, multi-faceted and complex processes subject to various constraints and challenges. In the past decades, many models have been developed mainly focusing on individual processes including oil weathering simulation, impact assessment, and clean-up optimization. However, to date, research on integration of offshore oil spill vulnerability analysis, process simulation and operation optimization is still lacking. Such deficiency could be more influential in harsh environments. It becomes noticeably critical and urgent to develop new methodologies and improve technical capacities of offshore oil spill responses. Therefore, this proposed research aims at developing an integrated decision support system for supporting offshore oil spill responses especially in harsh environments (DSS-OSRH). Such a DSS consists of offshore oil spill vulnerability analysis, response technologies screening, and simulation-optimization coupling. The uncertainties and/or dynamics have been quantitatively reflected throughout the modeling processes. First, a Monte Carlo simulation based two-stage adaptive resonance theory mapping (MC-TSAM) approach has been developed. A real-world case study was applied for offshore oil spill vulnerability index (OSVI) classification in the south coast of Newfoundland to demonstrate this approach. Furthermore, a Monte Carlo simulation based integrated rule-based fuzzy adaptive resonance theory mapping (MC-IRFAM) approach has been developed for screening and ranking for spill response and clean-up technologies. The feasibility of the MC-IRFAM was tested with a case of screening and ranking response technologies in an offshore oil spill event. A novel Monte Carlo simulation based dynamic mixed integer nonlinear programming (MC-DMINP) approach has also been developed for the simulation-optimization coupling in offshore oil spill responses. To demonstrate this approach, a case study was conducted in device allocation and oil recovery in an offshore oil spill event. Finally, the DSS-OSRH has been developed based on the integration of MC-TSAM, MC-IRFAM, AND MC-DSINP. To demonstrate its feasibility, a case study was conducted in the decision support during offshore oil spill response in the south coast of Newfoundland. The developed approaches and DSS are the first of their kinds to date targeting offshore oil spill responses. The novelty can be reflected from the following aspects: 1) an innovative MC-TSAM approach for offshore OSVI classification under complexity and uncertainty; 2) a new MC-IRFAM approach for oil spill response technologies classification and ranking with uncertain information; 3) a novel MC-DMINP simulation-optimization coupling approach for offshore oil spill response operation and resource allocation under uncertainty; and 4) an innovational DSS-OSRH which consists of the MC-TSAM, MC-IRFAM, MC-DMINP, supporting decision making throughout the offshore oil spill response processes. These methods are particularly suitable for offshore oil spill responses in harsh environments such as the offshore areas of Newfoundland and Labrador (NL). The research will also promote the understanding of the processes of oil transport and fate and the impacts to the affected offshore and shoreline area. The methodologies will be capable of providing modeling tools for other related areas that require timely and effective decisions under complexity and uncertainty

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research
    corecore