1,430 research outputs found

    Manipulating Highly Deformable Materials Using a Visual Feedback Dictionary

    Full text link
    The complex physical properties of highly deformable materials such as clothes pose significant challenges fanipulation systems. We present a novel visual feedback dictionary-based method for manipulating defoor autonomous robotic mrmable objects towards a desired configuration. Our approach is based on visual servoing and we use an efficient technique to extract key features from the RGB sensor stream in the form of a histogram of deformable model features. These histogram features serve as high-level representations of the state of the deformable material. Next, we collect manipulation data and use a visual feedback dictionary that maps the velocity in the high-dimensional feature space to the velocity of the robotic end-effectors for manipulation. We have evaluated our approach on a set of complex manipulation tasks and human-robot manipulation tasks on different cloth pieces with varying material characteristics.Comment: The video is available at goo.gl/mDSC4

    Cooperative Object Manipulation with Force Tracking on the da Vinci Research Kit

    Get PDF
    The da Vinci Surgical System is one of the most established robot-assisted surgery device commended for its dexterity and ergonomics in minimally invasive surgery. Conversely, it inherits disadvantages which are lack of autonomy and haptic feedback. In order to address these issues, this work proposes an industry-inspired solution to the field of force control in medical robotics. This approach contributes to shared autonomy by developing a controller for cooperative object manipulation with force tracking utilizing available manipulators and force feedback. To achieve simultaneous position and force tracking of the object, master and slave manipulators were assigned then controlled with Cartesian position control and impedance control respectively. Because impedance control requires a model-based feedforward compensation, we identified the lumped base parameters of mass, inertias, and frictions of a three degree-of-freedom double four-bar linkage mechanism with least squares and weighted least squares regression methods. Additionally, semidefinite programming was used to constrain the parameters to a feasible physical solution in standard parameter space. Robust stick-slip static friction compensation was applied where linear Viscous and Coulomb friction was inadequate in modeling the prismatic third joint. The Robot Operating System based controller was tested in RViz to check the cooperative kinematics of up to three manipulators. Additionally, simulation with the dynamic engine Gazebo verified the cooperative controller applying a constant tension force on a massless spring-damper virtual object. With adequate model feedback linearization, the cooperative impedance controller tested on the da Vinci Research Kit yielded stable tension force tracking while simultaneously moving in Cartesian space. The maximum force tracking error was +/- 0.5 N for both a compliant and stiff manipulated object

    Robot manipulation in human environments: Challenges for learning algorithms

    Get PDF
    Resumen del trabajo presentado al Dagstuhl Seminar 2014 celebrado en Dagstuhl (Alemania) del 17 al 21 de febrero de 2014.The European projects PACO-PLUS, GARNICS and IntellAct, the Spanish projects PAU and PAU+, and the Catalan grant SGR-155.Peer Reviewe

    From the Turing test to science fiction: the challenges of social robotics

    Get PDF
    The Turing test (1950) sought to distinguish whether a speaker engaged in a computer talk was a human or a machine [6]. Science fiction has immortalized several humanoid robots full of humanity, and it is nowadays speculating about the role the human being and the machine may play in this “pas à deux” in which we are irremissibly engaged [12]. Where is current robotics research heading to? Industrial robots are giving way to social robots designed to aid in healthcare, education, entertainment and services. In the near future, robots will assist disabled and elderly people, do chores, act as playmates for youngsters and adults, and even work as nannies and reinforcement teachers. This poses new requirements to robotics research, since social robots must be easy to program by non-experts [10], intrinsically safe [3], able to perceive and manipulate deformable objects [2, 8], tolerant to inaccurate perceptions and actions [4, 7] and, above all, they must be endowed with a strong learning capacity [1, 9] and a high adaptability [14] to non-predefined and dynamic environments. Taking as an example projects developed at the Institut de Robòtica i Informàtica Industrial (CSIC-UPC), some of the scientific, technological and ethical challenges [5, 11, 13] that this robotic evolution entails will be showcased.Peer ReviewedPostprint (author’s final draft

    Computational neurorehabilitation: modeling plasticity and learning to predict recovery

    Get PDF
    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling – regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity
    • …
    corecore