21,127 research outputs found

    Quantum Gravity as a Deformed Topological Quantum Field Theory

    Full text link
    It is known that the Einstein-Hilbert action with a positive cosmological constant can be represented as a perturbation of the SO(4,1) BF theory by a symmetry-breaking term quadratic in the B field. Introducing fermionic matter generates additional terms in the action which are polynomial in the tetrads and the spin connection. We describe how to construct the generating functional in the spin foam formalism for a generic BF theory when the sources for the B and the gauge field are present. This functional can be used to obtain a path integral for General Relativity with matter as a perturbative series whose the lowest order term is a path integral for a topological gravity coupled to matter.Comment: 7 pages, talk presented at the QG05 conference, 12-16 September 2005, Cala Gonone, Ital

    Poincare invariant gravity with local supersymmetry as a gauge theory for the M-algebra

    Get PDF
    Here we consider a gravitational action having local Poincare invariance which is given by the dimensional continuation of the Euler density in ten dimensions. It is shown that the local supersymmetric extension of this action requires the algebra to be the maximal extension of the N=1 super-Poincare algebra. The resulting action is shown to describe a gauge theory for the M-algebra, and is not the eleven-dimensional supergravity theory of Cremmer-Julia-Scherk. The theory admits a class of vacuum solutions of the form S^{10-d} x Y_{d+1}, where Y_{d+1} is a warped product of R with a d-dimensional spacetime. It is shown that a nontrivial propagator for the graviton exists only for d=4 and positive cosmological constant. Perturbations of the metric around this solution reproduce linearized General Relativity around four-dimensional de Sitter spacetime.Comment: Final version as published in Physics Letters B. Title changed in journal, some corrections, new references and comments adde

    Universally Coupled Massive Gravity

    Full text link
    We derive Einstein's equations from a linear theory in flat space-time using free-field gauge invariance and universal coupling. The gravitational potential can be either covariant or contravariant and of almost any density weight. We adapt these results to yield universally coupled massive variants of Einstein's equations, yielding two one-parameter families of distinct theories with spin 2 and spin 0. The Freund-Maheshwari-Schonberg theory is therefore not the unique universally coupled massive generalization of Einstein's theory, although it is privileged in some respects. The theories we derive are a subset of those found by Ogievetsky and Polubarinov by other means. The question of positive energy, which continues to be discussed, might be addressed numerically in spherical symmetry. We briefly comment on the issue of causality with two observable metrics and the need for gauge freedom and address some criticisms by Padmanabhan of field derivations of Einstein-like equations along the way.Comment: Introduction notes resemblance between Einstein's discovery process and later field/spin 2 project; matches journal versio

    Cosmological Constant and Local Gravity

    Get PDF
    We discuss the linearization of Einstein equations in the presence of a cosmological constant, by expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that the components of the gravitational field satisfying the appropriate Poisson equations have the property of ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and Λ>0\Lambda > 0, are attractive. In addition, there is a novel tensor potential, induced by the pressure density, in which the effect of the cosmological constant is repulsive. We also linearize the Schwarzschild-de Sitter exact solution of Einstein's equations (due to a generalization of Birkhoff's theorem) in the domain between the two horizons. We manage to transform it first to a gauge in which the 3-space metric is conformally flat and, then, make an additional coordinate transformation leading to the Lorentz gauge conditions. We compare our non-spherically symmetric solution with the linearized Schwarzschild-de Sitter metric, when the latter is transformed to the Lorentz gauge, and we find agreement. The resulting metric, however, does not acquire a proper Newtonian form in terms of the unique scalar potential that solves the corresponding Poisson equation. Nevertheless, our solution is stable, in the sense that the physical energy density is positive.Comment: 7 pages revtex, no figures; discussion on light bending added, no effect on conclusions, version to appear in Physical Review D
    corecore