178,674 research outputs found

    AI Researchers, Video Games Are Your Friends!

    Full text link
    If you are an artificial intelligence researcher, you should look to video games as ideal testbeds for the work you do. If you are a video game developer, you should look to AI for the technology that makes completely new types of games possible. This chapter lays out the case for both of these propositions. It asks the question "what can video games do for AI", and discusses how in particular general video game playing is the ideal testbed for artificial general intelligence research. It then asks the question "what can AI do for video games", and lays out a vision for what video games might look like if we had significantly more advanced AI at our disposal. The chapter is based on my keynote at IJCCI 2015, and is written in an attempt to be accessible to a broad audience.Comment: in Studies in Computational Intelligence Studies in Computational Intelligence, Volume 669 2017. Springe

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards

    Evolving Neural Networks for the Capture Game

    Get PDF
    Postprin

    Underdogs and superheroes: Designing for new players in public space

    Get PDF
    We are exploring methods for participatory and public involvement of new 'players' in the design space. Underdogs & Superheroes involves a game-based methodology ā€“ a series of creative activities or games ā€“ in order to engage people experientially, creatively, and personally throughout the design process. We have found that games help engage usersā€™ imaginations by representing reality without limiting expectations to what's possible here and now; engaging experiential and personal perspectives (the 'whole' person); and opening the creative process to hands-on user participation through low/no-tech materials and a widely-understood approach. The methods are currently being applied in the project Underdogs & Superheroes, which aims to evolve technological interventions for personal and community presence in local public spaces

    Microscopic activity patterns in the Naming Game

    Get PDF
    The models of statistical physics used to study collective phenomena in some interdisciplinary contexts, such as social dynamics and opinion spreading, do not consider the effects of the memory on individual decision processes. On the contrary, in the Naming Game, a recently proposed model of Language formation, each agent chooses a particular state, or opinion, by means of a memory-based negotiation process, during which a variable number of states is collected and kept in memory. In this perspective, the statistical features of the number of states collected by the agents becomes a relevant quantity to understand the dynamics of the model, and the influence of topological properties on memory-based models. By means of a master equation approach, we analyze the internal agent dynamics of Naming Game in populations embedded on networks, finding that it strongly depends on very general topological properties of the system (e.g. average and fluctuations of the degree). However, the influence of topological properties on the microscopic individual dynamics is a general phenomenon that should characterize all those social interactions that can be modeled by memory-based negotiation processes.Comment: submitted to J. Phys.

    Modeling two-language competition dynamics

    Get PDF
    During the last decade, much attention has been paid to language competition in the complex systems community, that is, how the fractions of speakers of several competing languages evolve in time. In this paper we review recent advances in this direction and focus on three aspects. First we consider the shift from two-state models to three state models that include the possibility of bilingual individuals. The understanding of the role played by bilingualism is essential in sociolinguistics. In particular, the question addressed is whether bilingualism facilitates the coexistence of languages. Second, we will analyze the effect of social interaction networks and physical barriers. Finally, we will show how to analyze the issue of bilingualism from a game theoretical perspective.Comment: 15 pages, 5 figures; published in the Special Issue of Advances in Complex Systems "Language Dynamics

    On the Foundations of the Theory of Evolution

    Full text link
    Darwinism conceives evolution as a consequence of random variation and natural selection, hence it is based on a materialistic, i.e. matter-based, view of science inspired by classical physics. But matter in itself is considered a very complex notion in modern physics. More specifically, at a microscopic level, matter and energy are no longer retained within their simple form, and quantum mechanical models are proposed wherein potential form is considered in addition to actual form. In this paper we propose an alternative to standard Neodarwinian evolution theory. We suggest that the starting point of evolution theory cannot be limited to actual variation whereupon is selected, but to variation in the potential of entities according to the context. We therefore develop a formalism, referred to as Context driven Actualization of Potential (CAP), which handles potentiality and describes the evolution of entities as an actualization of potential through a reiterated interaction with the context. As in quantum mechanics, lack of knowledge of the entity, its context, or the interaction between context and entity leads to different forms of indeterminism in relation to the state of the entity. This indeterminism generates a non-Kolmogorovian distribution of probabilities that is different from the classical distribution of chance described by Darwinian evolution theory, which stems from a 'actuality focused', i.e. materialistic, view of nature. We also present a quantum evolution game that highlights the main differences arising from our new perspective and shows that it is more fundamental to consider evolution in general, and biological evolution in specific, as a process of actualization of potential induced by context, for which its material reduction is only a special case.Comment: 11 pages, no figure
    • ā€¦
    corecore