230 research outputs found

    General Impossibility of Group Homomorphic Encryption in the Quantum World

    Get PDF
    Group homomorphic encryption represents one of the most important building blocks in modern cryptography. It forms the basis of widely-used, more sophisticated primitives, such as CCA2-secure encryption or secure multiparty computation. Unfortunately, recent advances in quantum computation show that many of the existing schemes completely break down once quantum computers reach maturity (mainly due to Shor's algorithm). This leads to the challenge of constructing quantum-resistant group homomorphic cryptosystems. In this work, we prove the general impossibility of (abelian) group homomorphic encryption in the presence of quantum adversaries, when assuming the IND-CPA security notion as the minimal security requirement. To this end, we prove a new result on the probability of sampling generating sets of finite (sub-)groups if sampling is done with respect to an arbitrary, unknown distribution. Finally, we provide a sufficient condition on homomorphic encryption schemes for our quantum attack to work and discuss its satisfiability in non-group homomorphic cases. The impact of our results on recent fully homomorphic encryption schemes poses itself as an open question.Comment: 20 pages, 2 figures, conferenc

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    Delegated and distributed quantum computation

    Get PDF

    Delegated and distributed quantum computation

    Get PDF

    On Security Notions for Multi-Party Computation

    Get PDF
    Die meisten Sicherheitsbegriffe, die heutzutage benutzt werden, stammen aus den 1980ern. Doch durch ein seitdem besseres Verständnis der Theorie stellt sich die Frage, ob sie nicht weiterentwickelt werden können. Ein begrenzender Faktor sind hierbei sogenannte Unmöglichkeitsbeweise, die mathematisch beweisen, welche Sicherheitsgarantien nicht erfüllt werden können. Diese liefern einen begrenzenden Faktor, ihre Aussage sollte jedoch nicht übertrieben werden. Der Beweis ist nur in seinem eigenen Setting gültig und deckt nur genau den einen Sicherheitsbegriff ab. Historisch haben sich die etablierten Sicherheitsbegriffe jedoch zu etwas deutlich schwächerem entwickelt, wodurch eine Lücke zwischen dem entstanden ist, was praktisch benutzt wird, und dem, was bekanntermaßen unmöglich ist. In dieser Promotion zeigen wir einige dieser Lücken auf und untersuchen Sicherheitsbegriffe, die mit Sicherer Mehrparteienberechnung (MPC) zusammenhängen, und die zwischen den Etablierten und den Unmöglichen liegen. Abbildung von Geschäftsmodellen und Gesetzlichen Regelungen in MPC. Mit Sicherer Mehrparteienberechnung (MPC) können Parteien eine Funktion über privaten Eingaben auf sichere Weise so berechnen, dass nichts über die Eingaben der anderen Parteien bekannt wird außer die Ausgabe der Funktion. Heutzutage hat MPC nur einen vergleichsweise geringen Mehraufwand im Vergleich zur direkten Berechnung. Und obwohl Datensparsamkeit in der Praxis belohnt wird, wird MPC kaum benutzt. Wir glauben dass einer der Gründe dafür, dass MPC in Praxis kaum benutzt wird, darin liegt, dass es Geschäftsmodelle und gesetzliche Regelungen ignoriert die eine gewisse Leakage der Daten benötigen, während allgemeines MPC auf fast-perfekte Privatsphäre hinarbeitet. Wir präsentieren einen neuen Baustein, der es Geschäften---die durch einen zentralen Operator repräsentiert werden---ermöglicht, effizient die gewünschte Menge an Leakage abzubilden, die benötigt wird, um das Geschäft aufrechtzuerhalten oder um gesetzliche Vorgaben zu erfüllen, während Nutzer anonym und ohne durch mehrere Interaktionen hinweg verlinkt werden können Daten sammeln. Wir modellieren die Anforderungen im Universal Composability (UC) Framework. Dadurch wird garantiert, dass die Sicherheitsgarantien unabhängig davon halten, welche Protokolle parallel ausgeführt werden. Trotz dieser starken Sicherheitsgarantien ist das Protokoll dabei effizient genug, um auf moderner Hardware ausgeführt zu werden, selbst wenn der Nutzer die Daten auf Smartphones mit beschränkter Rechenleistung sammeln. (Fetzer, Keller, Maier, Raiber, Rupp, Schwerdt, PETS 2022) Eine Instantiierung stärkerer Commitments. Mit einem Bit Commitment Schema kann sich ein Sender gegenüber eines Empfängers auf ein Bit festlegen, ohne das dabei zu offenbaren (hiding), aber auf eine Art die es dem Sender nicht erlaubt, den Empfänger später davon zu überzeugen, dass das Commitment auf ein anderes Bit festgelegt wurde (binding). In der Quantenwelt sind Commitments stark genug, um MPC zu konstruieren, weswegen es einen Anreiz gibt, Commitments so sicher wie möglich zu machen; jedoch sagen Unmöglichkeitsbeweise aus, dass beide Sicherheitsbegriffe -- hiding und binding -- gleichzeitig nicht bedingungslos halten können. Als Konsequenz weichen moderne Bit Commitment Schemas eine Sicherheitseigenschaft auf, die dann nur noch computationally halten, also auf Grundlage komplexitätstheoretischer Annahmen. Wir stellen das erste Bit Commitment Protokoll im Quantum Random Oracle Modle (QROM) vor, das bedingungslose Sicherheit für den Empfänger (binding) und langfristige Sicherheit für den Sender (hiding) bietet und das dabei keine Zusatzhardware benötigt. Unser Resultat basiert auf einer neuen Annahme über die Schwierigkeit, Quantenzustände über einen langen Zeitraum zu speichern. Langfristige Sicherheit modelliert technischen Fortschritt des Angreifers, da Transkripte, die heutzutage nicht effizient gebrochen werden können, in Zukunft vielleicht einfach extrahierbar sind, sobald schnellere Maschinen verfügbar sind. Wir beweisen die Sicherheit des Commitment Protokolls im QROM unter oben genannter Annahme und zeigen, dass eine Instantiierung im Standardmodell zu einem neuen Angriff auf die langfristige Hiding-Eigenschaft zulässt. (Döttling, Koch, Maier, Mechler, Müller, Müller-Quade, Tiepelt, IN EINREICHUNG) Undetectable Multi-Party Computation. Covert MPC ist eine Erweiterung von MPC, die nicht nur die Eingaben versteckt, sondern das gesamte Vorhandensein der Berechnung. Teilnehmer lernen nur dann die Ausgabe, wenn alle anderen Parteien das Protokoll ausgeführt haben und die Ausgabe für alle Parteien vorteilhaft ist. Anderenfalls lernen die Teilnehmer nichts, nicht mal, welche anderen Parteien versucht haben, an der Berechnung teilzunehmen. Ein einzelner Nichtteilnehmer kann unabsichtlich die gesamte Berechnung abbrechen. Daher stellt sich die Frage: können NN Teilnehmer eine Berechnung ausführen, während K>NK > N Parteien anwesend sind, und bei der die Ausgabe nur von den Eingaben der NN Teilnehmer abhängt, während die Identität der anderen Teilnehmer unter den anwesenden Parteien versteckt wird? Dies sollte insbesondere dann gelten, wenn die restlichen Parteien nicht wissen, dass eine Berechnung im Gang ist. Wir verknüpfen diese Frage mit der theoretischen Machbarkeit von Anonymen Whistleblowing, bei dem eine einzelne Partei versucht, eine Nachricht preiszugeben, ohne dabei die eigene Identität zu offenbaren und ohne dass sich die anderen Parteien auf irgendeine besondere Art verhalten müssen. Leider zeigen wir dass keine Primitive sowohl Korrektheit und Anonymität mit überwältigender Wahrscheinlichkeit im asymptotischen Setting erreichen kann, selbst unter sehr starken Annahmen. Jedoch konstruieren wir eine heuristische Instantiierung im Fine-Grained setting mit überwältigender Korrektheit und jeder beliebigen Ziel-Anonymität. Unsere Ergebnisse liefern starke Grundlagen für die Untersuchung der Möglichkeit von Anonymen Nachrichtentransfer durch authentifizierte Kanäle, ein faszinierendes Ziel von dem wir glauben, dass es von grundlegendem Interesse ist. (Agrikola, Couteau, Maier, TCC 2022

    Unforgeable Quantum Encryption

    Get PDF
    We study the problem of encrypting and authenticating quantum data in the presence of adversaries making adaptive chosen plaintext and chosen ciphertext queries. Classically, security games use string copying and comparison to detect adversarial cheating in such scenarios. Quantumly, this approach would violate no-cloning. We develop new techniques to overcome this problem: we use entanglement to detect cheating, and rely on recent results for characterizing quantum encryption schemes. We give definitions for (i.) ciphertext unforgeability , (ii.) indistinguishability under adaptive chosen-ciphertext attack, and (iii.) authenticated encryption. The restriction of each definition to the classical setting is at least as strong as the corresponding classical notion: (i) implies INT-CTXT, (ii) implies IND-CCA2, and (iii) implies AE. All of our new notions also imply QIND-CPA privacy. Combining one-time authentication and classical pseudorandomness, we construct schemes for each of these new quantum security notions, and provide several separation examples. Along the way, we also give a new definition of one-time quantum authentication which, unlike all previous approaches, authenticates ciphertexts rather than plaintexts.Comment: 22+2 pages, 1 figure. v3: error in the definition of QIND-CCA2 fixed, some proofs related to QIND-CCA2 clarifie
    corecore