70 research outputs found

    Multi-Armed Bandits for Intelligent Tutoring Systems

    Get PDF
    We present an approach to Intelligent Tutoring Systems which adaptively personalizes sequences of learning activities to maximize skills acquired by students, taking into account the limited time and motivational resources. At a given point in time, the system proposes to the students the activity which makes them progress faster. We introduce two algorithms that rely on the empirical estimation of the learning progress, RiARiT that uses information about the difficulty of each exercise and ZPDES that uses much less knowledge about the problem. The system is based on the combination of three approaches. First, it leverages recent models of intrinsically motivated learning by transposing them to active teaching, relying on empirical estimation of learning progress provided by specific activities to particular students. Second, it uses state-of-the-art Multi-Arm Bandit (MAB) techniques to efficiently manage the exploration/exploitation challenge of this optimization process. Third, it leverages expert knowledge to constrain and bootstrap initial exploration of the MAB, while requiring only coarse guidance information of the expert and allowing the system to deal with didactic gaps in its knowledge. The system is evaluated in a scenario where 7-8 year old schoolchildren learn how to decompose numbers while manipulating money. Systematic experiments are presented with simulated students, followed by results of a user study across a population of 400 school children

    Knowledge Tracing in Sequential Learning of Inflected Vocabulary

    Get PDF

    Personalized Stopping Rules in Bayesian Adaptive Mastery Assessment

    Full text link
    We propose a new model to assess the mastery level of a given skill efficiently. The model, called Bayesian Adaptive Mastery Assessment (BAMA), uses information on the accuracy and the response time of the answers given and infers the mastery at every step of the assessment. BAMA balances the length of the assessment and the certainty of the mastery inference by employing a Bayesian decision-theoretic framework adapted to each student. All these properties contribute to a novel approach in assessment models for intelligent learning systems. The purpose of this research is to explore the properties of BAMA and evaluate its performance concerning the number of questions administered and the accuracy of the final mastery estimates across different students. We simulate student performances and establish that the model converges with low variance and high efficiency leading to shorter assessment duration for all students. Considering the experimental results, we expect our approach to avoid the issue of over-practicing and under-practicing and facilitate the development of Learning Analytics tools to support the tutors in the evaluation of learning effects and instructional decision making.Comment: 12 page
    • …
    corecore