518 research outputs found

    Evolving Graphical Planner: Contextual Global Planning for Vision-and-Language Navigation

    Full text link
    The ability to perform effective planning is crucial for building an instruction-following agent. When navigating through a new environment, an agent is challenged with (1) connecting the natural language instructions with its progressively growing knowledge of the world; and (2) performing long-range planning and decision making in the form of effective exploration and error correction. Current methods are still limited on both fronts despite extensive efforts. In this paper, we introduce the Evolving Graphical Planner (EGP), a model that performs global planning for navigation based on raw sensory input. The model dynamically constructs a graphical representation, generalizes the action space to allow for more flexible decision making, and performs efficient planning on a proxy graph representation. We evaluate our model on a challenging Vision-and-Language Navigation (VLN) task with photorealistic images and achieve superior performance compared to previous navigation architectures. For instance, we achieve a 53% success rate on the test split of the Room-to-Room navigation task through pure imitation learning, outperforming previous navigation architectures by up to 5%

    Multimodal Attention Networks for Low-Level Vision-and-Language Navigation

    Get PDF
    Vision-and-Language Navigation (VLN) is a challenging task in which an agent needs to follow a language-specified path to reach a target destination. The goal gets even harder as the actions available to the agent get simpler and move towards low-level, atomic interactions with the environment. This setting takes the name of low-level VLN. In this paper, we strive for the creation of an agent able to tackle three key issues: multi-modality, long-term dependencies, and adaptability towards different locomotive settings. To that end, we devise "Perceive, Transform, and Act" (PTA): a fully-attentive VLN architecture that leaves the recurrent approach behind and the first Transformer-like architecture incorporating three different modalities -- natural language, images, and low-level actions for the agent control. In particular, we adopt an early fusion strategy to merge lingual and visual information efficiently in our encoder. We then propose to refine the decoding phase with a late fusion extension between the agent's history of actions and the perceptual modalities. We experimentally validate our model on two datasets: PTA achieves promising results in low-level VLN on R2R and achieves good performance in the recently proposed R4R benchmark. Our code is publicly available at https://github.com/aimagelab/perceive-transform-and-act

    Improving Vision-and-Language Navigation by Generating Future-View Image Semantics

    Full text link
    Vision-and-Language Navigation (VLN) is the task that requires an agent to navigate through the environment based on natural language instructions. At each step, the agent takes the next action by selecting from a set of navigable locations. In this paper, we aim to take one step further and explore whether the agent can benefit from generating the potential future view during navigation. Intuitively, humans will have an expectation of how the future environment will look like, based on the natural language instructions and surrounding views, which will aid correct navigation. Hence, to equip the agent with this ability to generate the semantics of future navigation views, we first propose three proxy tasks during the agent's in-domain pre-training: Masked Panorama Modeling (MPM), Masked Trajectory Modeling (MTM), and Action Prediction with Image Generation (APIG). These three objectives teach the model to predict missing views in a panorama (MPM), predict missing steps in the full trajectory (MTM), and generate the next view based on the full instruction and navigation history (APIG), respectively. We then fine-tune the agent on the VLN task with an auxiliary loss that minimizes the difference between the view semantics generated by the agent and the ground truth view semantics of the next step. Empirically, our VLN-SIG achieves the new state-of-the-art on both the Room-to-Room dataset and the CVDN dataset. We further show that our agent learns to fill in missing patches in future views qualitatively, which brings more interpretability over agents' predicted actions. Lastly, we demonstrate that learning to predict future view semantics also enables the agent to have better performance on longer paths.Comment: CVPR 2023 (Project webpage: https://jialuli-luka.github.io/VLN-SIG
    • …
    corecore