43 research outputs found

    Efficient, High Power Density, Modular Wide Band-gap Based Converters for Medium Voltage Application

    Get PDF
    Recent advances in semiconductor technology have accelerated developments in medium-voltage direct-current (MVDC) power system transmission and distribution. A DC-DC converter is widely considered to be the most important technology for future DC networks. Wide band-gap (WBG) power devices (i.e. Silicon Carbide (SiC) and Gallium Nitride (GaN) devices) have paved the way for improving the efficiency and power density of power converters by means of higher switching frequencies with lower conduction and switching losses compared to their Silicon (Si) counterparts. However, due to rapid variation of the voltage and current, di/dt and dv/dt, to fully utilize the advantages of the Wide-bandgap semiconductors, more focus is needed to design the printed circuit boards (PCB) in terms of minimizing the parasitic components, which impacts efficiency. The aim of this dissertation is to study the technical challenges associated with the implementation of WBG devices and propose different power converter topologies for MVDC applications. Ship power system with MVDC distribution is attracting widespread interest due to higher reliability and reduced fuel consumption. Also, since the charging time is a barrier for adopting the electric vehicles, increasing the voltage level of the dc bus to achieve the fast charging is considered to be the most important solution to address this concern. Moreover, raising the voltage level reduces the size and cost of cables in the car. Employing MVDC system in the power grid offers secure, flexible and efficient power flow. It is shown that to reach optimal performance in terms of low package inductance and high slew rate of switches, designing a PCB with low common source inductance, power loop inductance, and gate-driver loop are essential. Compared with traditional power converters, the proposed circuits can reduce the voltage stress on switches and diodes, as well as the input current ripple. A lower voltage stress allows the designer to employ the switches and diodes with lower on-resistance RDS(ON) and forward voltage drop, respectively. Consequently, more efficient power conversion system can be achieved. Moreover, the proposed converters offer a high voltage gain that helps the power switches with smaller duty-cycle, which leads to lower current and voltage stress across them. To verify the proposed concept and prove the correctness of the theoretical analysis, the laboratory prototype of the converters using WBG devices were implemented. The proposed converters can provide energy conversion with an efficiency of 97% feeding the nominal load, which is 2% more than the efficiency of the-state-of-the-art converters. Besides the efficiency, shrinking the current ripple leads to 50% size reduction of the input filter inductors

    Advanced topologies of high step-up DC-DC converters for renewable energy applications

    Get PDF
    This research is focused on developing several advanced topologies of high step-up DC-DC converters to connect low-voltage renewable energy (RE) sources, such as photovoltaic (PV) panels and fuel cells (FCs), into a high-voltage DC bus in renewable energy applications. The proposed converters are based on the combinations of various voltage-boosting (VB) techniques, including interleaved and quadratic structures, switched-capacitor (SC)-based voltage multiplier (VM) cells, and magnetically coupled inductor (CI) and built-in-transformer (BIT). The proposed converters offer outstanding features, including high voltage gain with low or medium duty cycle, a small number of components, low current and voltage stresses on the components, continuous input current with low ripple, and high efficiency. This research includes five new advanced high step-up DC-DC converters with detailed analyses. First, an interleaved converter is presented, which is based on the integration of two three-winding CIs with SC-based VM cells. Second, a dual-switch converter is proposed, which is based on the integration of a single three-winding CI with SC-based VM cells. Third, the SC-based VM cells are utilized to present three new Z-source (ZS)-based converters. Fourth, two double-winding CIs and a three-winding BIT are combined with SC-based VM cells to develop another interleaved high step-up converter. Finally, two double-winding CIs and SC-based VM cells are adopted to devise an interleaved quadratic converter with high voltage gain. The operating and steady-state analyses, design considerations, and a comparison with similar converters in the literature are provided for each converter. In addition, hardware prototypes were fabricated to verify the performance of the proposed converters --Abstract, page iv

    Closed Loop Control of High Voltage Gain IBC with Voltage Multiplier Module

    Get PDF
    This paper presents the closed loop control of a high voltage gain IBC. A high voltage gain Interleaved Boost Converter (IBC) with Voltage Multiplier module is suitable for renewable energy system, which requires high step up conversion ratio. In order to obtain high gain, a built-in transformer and a voltage multiplier module inserted into each phase of conventional interleaved boost converter. The voltage multiplier cell is composed of built-in transformer windings, diodes and small capacitors. The Voltage multiplier module is efficient, low cost and simple topology composed of switched capacitors and diodes to obtain high DC output voltage. In order to obtain the controlled output voltage from a DC – DC converter under varying input conditions, it is necessary to regulate the output voltage which is achieved through closed loop control. A PI controller is implemented to improve its performance of the proposed IBC during the disturbances due to renewable energy sources. The closed loop control of the proposed IBC with multiplier module is analyzed and simulated for high voltage gain using MATLAB Simulink

    A Comprehensive Review of DC-DC Converters for EV Applications

    Get PDF
    DC-DC converters in Electric vehicles (EVs) have the role of interfacing power sources to the DC-link and the DC-link to the required voltage levels for usage of different systems in EVs like DC drive, electric traction, entertainment, safety and etc. Improvement of gain and performance in these converters has a huge impact on the overall performance and future of EVs. So, different configurations have been suggested by many researches. In this paper, bidirectional DC-DC converters (BDCs) are divided into four categories as isolated-soft, isolated-hard, non-isolated-soft and non-isolated-hard depending on the isolation and type of switching. Moreover, the control strategies, comparative factors, selection for a specific application and recent trends are reviewed completely. As a matter of fact, over than 200 papers have been categorized and considered to help the researchers who work on BDCs for EV application

    High step up DC-DC converter topology for PV systems and electric vehicles

    Get PDF
    This thesis presents new high step-up DC-DC converters for photovoltaic and electric vehicle applications. An asymmetric flyback-forward DC-DC converter is proposed for the PV system controlled by the MPPT algorithm. The second converter is a modular switched-capacitor DC-DC converter, it has the capability to operate with transistor and capacitor open-circuit faults in every module. The results from simulations and tests of the asymmetric DC-DC converters have suggested that the proposed converter has a 5% to 10% voltage gain ratio increased to the symmetric structures among 100W – 300W power (such as [3]) range while maintaining efficiency of 89%-93% when input voltage is in the range of 25 – 30 V. they also indicated that the softswitching technique has been achieved, which significantly reduce the power loss by 1.7%, which exceeds the same topology of the proposed converter without the softswitching technique. Moreover, the converters can maintain rated outputs under main transistor open circuit fault situation or capacitor open circuit faults. The simulation and test results of the proposed modularized switched-capacitor DC-DC converters indicate that the proposed converter has the potential of extension, it can be embedded with infinite module in simulation results, however, during experiment. The sign open circuit fault to the transistors and capacitors would have low impact to the proposed converters, only the current ripple on the input source would increase around 25% for 4-module switched-capacitor DC-DC converters. The developed converters can be applied to many applications where DC-DC voltage conversion is alighted. In addition to PVs and EVs. Since they can ride through some electrical faults in the devices, the developed converter will have economic implications to improve the system efficiency and reliability

    High gain non-isolated DC-DC converter topologies for energy conversion systems

    Get PDF
    PhD ThesisEmerging applications driven by low voltage level power sources, such as photovoltaics, batteries and fuel cells require static power converters for appropriate energy conversion and conditioning to supply the requirements of the load system. Increasingly, for applications such as grid connected inverters, uninterruptible power supplies (UPS), and electric vehicles (EV), the performance of a high efficiency high static gain power converter is of critical importance to the overall system. Theoretically, the conventional boost and buck-boost converters are the simplest non-isolated topologies for voltage step-up. However, these converters typically operate under extreme duty ratio, and severe output diode reverse recovery related losses to achieve high voltage gain. This thesis presents derivation, analysis and design issues of advanced high step-up topologies with coupled inductor and voltage gain extension cell. The proposed innovative solution can achieve significant performance improvement compared to the recently proposed state of the art topologies. Two unique topologies employing coupled inductor and voltage gain extension cell are proposed. Power converters utilising coupled inductors traditionally require a clamp circuit to limit the switch voltage excursion. Firstly, a simple low-cost, high step-up converters employing active and passive clamp scheme is proposed. Performance comparison of the clamps circuits shows that the active clamp solution can achieve higher efficiency over the passive solution. Secondly, the primary detriment of increasing the power level of a coupled inductor based converters is high current ripple due to coupled inductor operation. It is normal to interleaved DC-DC converters to share the input current, minimize the current ripple and increase the power density. This thesis presents an input parallel output series converter integrating coupled inductors and switched capacitor demonstrating high static gain. Steady state analysis of the converter is presented to determine the power flow equations. Dynamic analysis is performed to design a closed loop controller to regulate the output voltage of the interleaved converter. The design procedure of the high step-up converters is explained, simulation and experimental results of the laboratory prototypes are presented. The experimental results obtained via a 250 W single phase converter and that of a 500 W interleaved converter prototypes; validate both the theory and operational characteristics of each power converter.Petroleum Technology Development Fund (PTDF) Nigeri

    A review on non-isolated low-power DC-DC converter topologies with high output gain for solar photovoltaic system applications

    Get PDF
    The major challenges of the high-gain DC–DC boost converters are high-voltage stress on the switch, extreme duty ratio operation, diode reverse-recovery and converter efficiency problems. There are many topologies of high-gain converters that have been widely developed to overcome those problems, especially for solar photovoltaic (PV) power-system applications. In this paper, 20 high-gain and low-power DC–DC converter topologies are selected from many topologies of available literature. Then, seven prospective topologies with conversion ratios of >15 are thoroughly reviewed and compared. The selected topologies are: (i) voltage-multiplier cell, (ii) voltage doubler, (iii) coupled inductor, (iv) converter with a coupled inductor and switch capacitor, (v) converter with a switched inductor and switched capacitor, (vi) cascading techniques and (vii) voltage-lift techniques. Each topology has its advantages and disadvantages. A comparison of the seven topologies is provided in terms of the number of components, hardware complexity, maximum converter efficiency and voltage stress on the switch. These are presented in detail. So, in the future, it will be easier for researchers and policymakers to choose the right converter topologies and build them into solar PV systems based on their needs

    Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in Fuel Cell Vehicles

    Get PDF
    The automobile companies are focusing on recent technologies such as growing Hydrogen (H2) and Fuel Cell (FC) Vehicular Power Train (VPT) to improve the Tank-To-Wheel (TTW) efficiency. Benefits, the lower cost, `Eco\u27 friendly, zero-emission and high-power capacity, etc. In the power train of fuel cell vehicles, the DC-DC power converters play a vital role to boost the fuel cell stack voltage. Hence, satisfy the demand of the motor and transmission in the vehicles. Several DC-DC converter topologies have proposed for various vehicular applications like fuel cell, battery, and renewable energy fed hybrid vehicles etc. Most cases, the DC-DC power converters are viable and cost-effective solutions for FC-VPT with reduced size and increased efficiency. This article describes the state-of-the-art in unidirectional non-isolated DC-DC Multistage Power Converter (MPC) topologies for FC-VPT application. The paper presented the comprehensive review, comparison of different topologies and stated the suitability for different vehicular applications. This article also discusses the DC-DC MPC applications more specific to the power train of a small vehicle to large vehicles (bus, trucks etc.). Further, the advantages and disadvantages pointed out with the prominent features for converters. Finally, the classification of the DC-DC converters, its challenges, and applications for FC technology is presented in the review article as state-of-the-art in research

    Two new families of high-gain DC-DC power electronic converters for DC-microgrids

    Get PDF
    Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models. --Abstract, page iv

    High-Voltage-Gain DC-DC Power Electronic Converters -- New Topologies and Classification

    Get PDF
    This dissertation proposes two new high-voltage-gain dc-dc converters for integration of renewable energy sources in 380/400V dc distribution systems. The first high-voltage-gain converter is based on a modified Dickson charge pump voltage multiplier circuit. The second high-voltage-gain converter is based on a non-inverting diode-capacitor voltage multiplier cell. Both the proposed converters offer continuous input current and low voltage stress on switches which make them appealing for applications like integration of renewable energy sources. The proposed converters are capable for drawing power from a single source or two sources while having continuous input current in both cases. Theoretical analysis of the operation of the proposed converters and the component stresses are discussed with supporting simulation and hardware results. This dissertation also proposes a family of high-voltage-gain dc-dc converters that are based on a generalized structure. The two stage general structure consists of a two-phase interleaved (TPI) boost stage and a voltage multiplier (VM) stage. The TPI boost stage results in a classification of the family of converters into non-isolated and isolated converters. A few possible VM stages are discussed. The voltage gain derivations of the TPI boost stages and VM stages are presented in detail. An example converter is discussed with supporting hardware results to verify the general structure. The proposed family of converters can be powered using single source or two sources while having continuous input current in both cases. These high voltage gain dc-dc converters are modular and scalable; making them ideal for harnessing energy from various renewable sources offering power at different levels --Abstract, page iv
    corecore