3 research outputs found

    A multipath analysis of biswapped networks.

    Get PDF
    Biswapped networks of the form Bsw(G)Bsw(G) have recently been proposed as interconnection networks to be implemented as optical transpose interconnection systems. We provide a systematic construction of κ+1\kappa+1 vertex-disjoint paths joining any two distinct vertices in Bsw(G)Bsw(G), where κ1\kappa\geq 1 is the connectivity of GG. In doing so, we obtain an upper bound of max{2Δ(G)+5,Δκ(G)+Δ(G)+2}\max\{2\Delta(G)+5,\Delta_\kappa(G)+\Delta(G)+2\} on the (κ+1)(\kappa+1)-diameter of Bsw(G)Bsw(G), where Δ(G)\Delta(G) is the diameter of GG and Δκ(G)\Delta_\kappa(G) the κ\kappa-diameter. Suppose that we have a deterministic multipath source routing algorithm in an interconnection network GG that finds κ\kappa mutually vertex-disjoint paths in GG joining any 22 distinct vertices and does this in time polynomial in Δκ(G)\Delta_\kappa(G), Δ(G)\Delta(G) and κ\kappa (and independently of the number of vertices of GG). Our constructions yield an analogous deterministic multipath source routing algorithm in the interconnection network Bsw(G)Bsw(G) that finds κ+1\kappa+1 mutually vertex-disjoint paths joining any 22 distinct vertices in Bsw(G)Bsw(G) so that these paths all have length bounded as above. Moreover, our algorithm has time complexity polynomial in Δκ(G)\Delta_\kappa(G), Δ(G)\Delta(G) and κ\kappa. We also show that if GG is Hamiltonian then Bsw(G)Bsw(G) is Hamiltonian, and that if GG is a Cayley graph then Bsw(G)Bsw(G) is a Cayley graph

    Multiswapped networks and their topological and algorithmic properties

    Get PDF
    We generalise the biswapped network Bsw(G)Bsw(G) to obtain a multiswapped network Msw(H;G)Msw(H;G), built around two graphs G and H. We show that the network Msw(H;G)Msw(H;G) lends itself to optoelectronic implementation and examine its topological and algorithmic. We derive the length of a shortest path joining any two vertices in Msw(H;G)Msw(H;G) and consequently a formula for the diameter. We show that if G has connectivity κ⩾1κ⩾1 and H has connectivity λ⩾1λ⩾1 where λ⩽κλ⩽κ then Msw(H;G)Msw(H;G) has connectivity at least κ+λκ+λ, and we derive upper bounds on the (κ+λ)(κ+λ)-diameter of Msw(H;G)Msw(H;G). Our analysis yields distributed routing algorithms for a distributed-memory multiprocessor whose underlying topology is Msw(H;G)Msw(H;G). We also prove that if G and H are Cayley graphs then Msw(H;G)Msw(H;G) need not be a Cayley graph, but when H is a bipartite Cayley graph then Msw(H;G)Msw(H;G) is necessarily a Cayley graph

    General Biswapped Networks and Their Topological Properties

    No full text
    corecore