1,874 research outputs found

    A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant staphylococcus aureus pandemic

    Get PDF
    The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens

    Genome characterization and population genetic structure of the zoonotic pathogen, streptococcus canis

    Get PDF
    Background - Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results - Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion - This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen

    Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe

    Get PDF
    Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage

    An expanded multilocus sequence typing scheme for propionibacterium acnes : investigation of 'pathogenic', 'commensal' and antibiotic resistant strains

    Get PDF
    The Gram-positive bacterium Propionibacterium acnes is a member of the normal human skin microbiota and is associated with various infections and clinical conditions. There is tentative evidence to suggest that certain lineages may be associated with disease and others with health. We recently described a multilocus sequence typing scheme (MLST) for P. acnes based on seven housekeeping genes (http://pubmlst.org/pacnes). We now describe an expanded eight gene version based on six housekeeping genes and two ‘putative virulence’ genes (eMLST) that provides improved high resolution typing (91eSTs from 285 isolates), and generates phylogenies congruent with those based on whole genome analysis. When compared with the nine gene MLST scheme developed at the University of Bath, UK, and utilised by researchers at Aarhus University, Denmark, the eMLST method offers greater resolution. Using the scheme, we examined 208 isolates from disparate clinical sources, and 77 isolates from healthy skin. Acne was predominately associated with type IA1 clonal complexes CC1, CC3 and CC4; with eST1 and eST3 lineages being highly represented. In contrast, type IA2 strains were recovered at a rate similar to type IB and II organisms. Ophthalmic infections were predominately associated with type IA1 and IA2 strains, while type IB and II were more frequently recovered from soft tissue and retrieved medical devices. Strains with rRNA mutations conferring resistance to antibiotics used in acne treatment were dominated by eST3, with some evidence for intercontinental spread. In contrast, despite its high association with acne, only a small number of resistant CC1 eSTs were identified. A number of eSTs were only recovered from healthy skin, particularly eSTs representing CC72 (type II) and CC77 (type III). Collectively our data lends support to the view that pathogenic versus truly commensal lineages of P. acnes may exist. This is likely to have important therapeutic and diagnostic implications

    Mode and dynamics of vanA-type vancomycin resistance dissemination in Dutch hospitals

    Get PDF
    Background Enterococcus faecium is a commensal of the gastrointestinal tract of animals and humans but also a causative agent of hospital-acquired infections. Resistance against glycopeptides and to vancomycin has motivated the inclusion of E. faecium in the WHO global priority list. Vancomycin resistance can be conferred by the vanA gene cluster on the transposon Tn1546, which is frequently present in plasmids. The vanA gene cluster can be disseminated clonally but also horizontally either by plasmid dissemination or by Tn1546 transposition between different genomic locations. Methods We performed a retrospective study of the genomic epidemiology of 309 vancomycin-resistant E. faecium (VRE) isolates across 32 Dutch hospitals (2012-2015). Genomic information regarding clonality and Tn1546 characterization was extracted using hierBAPS sequence clusters (SC) and TETyper, respectively. Plasmids were predicted using gplas in combination with a network approach based on shared k-mer content. Next, we conducted a pairwise comparison between isolates sharing a potential epidemiological link to elucidate whether clonal, plasmid, or Tn1546 spread accounted for vanA-type resistance dissemination. Results On average, we estimated that 59% of VRE cases with a potential epidemiological link were unrelated which was defined as VRE pairs with a distinct Tn1546 variant. Clonal dissemination accounted for 32% cases in which the same SC and Tn1546 variants were identified. Horizontal plasmid dissemination accounted for 7% of VRE cases, in which we observed VRE pairs belonging to a distinct SC but carrying an identical plasmid and Tn1546 variant. In 2% of cases, we observed the same Tn1546 variant in distinct SC and plasmid types which could be explained by mixed and consecutive events of clonal and plasmid dissemination. Conclusions In related VRE cases, the dissemination of the vanA gene cluster in Dutch hospitals between 2012 and 2015 was dominated by clonal spread. However, we also identified outbreak settings with high frequencies of plasmid dissemination in which the spread of resistance was mainly driven by horizontal gene transfer (HGT). This study demonstrates the feasibility of distinguishing between modes of dissemination with short-read data and provides a novel assessment to estimate the relative contribution of nested genomic elements in the dissemination of vanA-type resistance.Peer reviewe

    Single-cell delineation of lineage and genetic identity in the mouse brain

    Get PDF
    During neurogenesis, mitotic progenitor cells lining the ventricles ofthe embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia(1,2). The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level

    The Repertoire and Dynamics of Evolutionary Adaptations to Controlled Nutrient-Limited Environments in Yeast

    Get PDF
    The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes—including point mutations, structural changes, and insertion variation—that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for ∼200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5–50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications) to known features of the relevant metabolic pathways, but many of the mutations pointed to genes not previously associated with the relevant physiology. Thus, in addition to answering basic mechanistic questions about evolutionary mechanisms, our work suggests that experimental evolution can also shed light on the function and regulation of individual metabolic pathways

    Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite

    Get PDF
    How generalist parasites with wide host ranges can evolve is a central question in parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome sequence assemblies of five isolates, we show they represent three races that are genetically diverged by ∼1%. Despite this divergence, their genomes are mosaic-like, with ∼25% being introgressed from other races. Sequential infection experiments show that infection by adapted races enables subsequent infection of hosts by normally non-infecting races. This facilitates introgression and the exchange of effector repertoires, and may enable the evolution of novel races that can undergo clonal population expansion on new hosts. We discuss recent studies on hybridization in other eukaryotes such as yeast, Heliconius butterflies, Darwin’s finches, sunflowers and cichlid fishes, and the implications of introgression for pathogen evolution in an agro-ecological environment

    Differences in genotype and virulence among four multidrug-resistant <i>Streptococcus pneumoniae</i> isolates belonging to the PMEN1 clone

    Get PDF
    We report on the comparative genomics and characterization of the virulence phenotypes of four &lt;i&gt;S. pneumoniae&lt;/i&gt; strains that belong to the multidrug resistant clone PMEN1 (Spain&lt;sup&gt;23F&lt;/sup&gt; ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinant
    corecore