22 research outputs found

    Gene expression changes induced by the tumorigenic pyrrolizidine alkaloid riddelliine in liver of Big Blue rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrrolizidine alkaloids (PAs) are probably the most common plant constituents that poison livestock, wildlife, and humans worldwide. Riddelliine is isolated from plants grown in the western United States and is a prototype of genotoxic PAs. Riddelliine was used to investigate the genotoxic effects of PAs via analysis of gene expression in the target tissue of rats in this study. Previously we observed that the mutant frequency in the liver of rats gavaged with riddelliine was 3-fold higher than that in the control group. Molecular analysis of the mutants indicated that there was a statistically significant difference between the mutational spectra from riddelliine-treated and control rats.</p> <p>Results</p> <p>Riddelliine-induced gene expression profiles in livers of Big Blue transgenic rats were determined. The female rats were gavaged with riddelliine at a dose of 1 mg/kg body weight 5 days a week for 12 weeks. Rat whole genome microarray was used to perform genome-wide gene expression studies. When a cutoff value of a two-fold change and a <it>P</it>-value less than 0.01 were used as gene selection criteria, 919 genes were identified as differentially expressed in riddelliine-treated rats compared to the control animals. By analysis with the Ingenuity Pathway Analysis Network, we found that these significantly changed genes were mainly involved in cancer, cell death, tissue development, cellular movement, tissue morphology, cell-to-cell signaling and interaction, and cellular growth and proliferation. We further analyzed the genes involved in metabolism, injury of endothelial cells, liver abnormalities, and cancer development in detail.</p> <p>Conclusion</p> <p>The alterations in gene expression were directly related to the pathological outcomes reported previously. These results provided further insight into the mechanisms involved in toxicity and carcinogenesis after exposure to riddelliine, and permitted us to investigate the interaction of gene products inside the signaling networks.</p

    Relative Hepatotoxocity, Carcinogenicity, and Toxicogenomics of Select Dehydropyrrolizidine Alkaloids in Mice

    Get PDF
    Dehydropyrrolizidine alkaloids are arguably the most important plant derived toxins in terms of impact on human and animal health. Dehydropyrrolizidine alkaloids are a large group of chemically related compounds found in 3% of flowering plants worldwide. Human exposure occurs from ingestion of herbal products including teas supplements or contaminated grain. Animals are exposed through contaminated feed or grazing. There are at least 350 identified toxic PAs, from more than 6,000 plants. The toxins primarily cause liver damage, but some are proven to cause cancer. Indidvidual dehydropyrrolizidine alkaloids vary in their toxic effects. Riddelliine is the only dehydropyrrolizidine alkaloid with extensive evidence of its cancer-causing effects. The purpose of the research presented herein is to characterize and compare the relative toxic and cancer-causing effects of select dehydropyrrolizidine alkaloids. In the first experiment, seven compounds are administered to C57BL6/j mice by oral gavage for ten days at varying doses. Microscopic liver damage, liver enzymes, and liver concentrations of the toxic metabolite were compared. There was variation in the characteristics and severity of liver damage between compounds. Liver enzymes indicative of liver damage were observed. Riddelliine caused the greatest concentration of the toxic metabolite in the liver. In the second experiment, five dehydropyrrolizidine alkaloids were administered to genetically modified mice for ten days at the same dose. These mice are designed to develop cancer more readily. There was no statistically significant difference in the development of cancer between the mice exposed to any of the five compounds compared to the control group, in. This indicates that short-duration exposure to dehydropyrrolizidine alkaloids at high doses may be less likely to cause cancer than long term low-dose exposure. In the third experiment, three dehydropyrrolizidine alkaloids were administered to mice at a common dose for 8 days. Whole genome RNA expression was compared for each compound at two time-points. Two of the compounds, riddelliine and senecionine, caused liver damage and similar gene expression changes. The dysregulated genes were related to cancer development and metabolism, indicating that senecionine may also cause cancer. Dysregulated genes tended to return to normal expression levels after 28 days, indicating recovery

    Structure-dependent relative toxic potencies of selected pyrrolizidine alkaloids

    Get PDF
    Pyrrolizidine alkaloids are naturally occurring secondary plant metabolites mainly found in plant families of Asteraceae, Boraginaceae, and Fabaceae. Chemically, PAs consist of a pyrrolizidine core bearing hydroxyl groups, the so-called necine base, and mono- or dicarboxylic necine acids bound to the pyrrolizidine core via ester linkages. 1,2-unsaturated PAs are hepatotoxic, genotoxic, and carcinogenic due to the highly reactive pyrrolic metabolites formed by cytochrome P450 monooxygenases (CYPs) primarily in the liver. The presence of PAs as frequent contaminants in the wide variety of food and feed products would be a concern for public health. Due to the inadequate data, the risk assessment of PAs was mainly approached using the two most toxic potent congeners, i.e., lasiocarpine and riddelliine. However, the toxic potencies of individual PA congeners differentiated widely between the congeners probably related to their structural features. The risk of PA-containing products is indeed overestimated, and a comprehensive risk assessment should take these differences into account. After analyzing the data of many PAs, Merz and Schrenk derived interim Relative Potency (iREP) factors to present the differences in their toxicity between the sub-groups concerning their structural features. But since this concept was derived from an inadequate database, it was found that the relative toxicity of individual congeners cannot be entirely reliably evaluated. My work aimed to achieve more comprehensive congener-specific in vitro toxicological data and estimate the structure-related characteristics for refining this concept. For this purpose, ten congeners, lasiocarpine, monocrotaline, retrorsine, senecionine, seneciphylline, echimidine, europine, heliotrine, indicine, and lycopsamine, were determined in a series of in vitro test systems with different endpoints to quantify their cytotoxicity, genotoxicity, and mutagenicity. Cytotoxicity was assessed using the Alamar blue assay. A clear structure dependence could be demonstrated in primary rat hepatocytes and HepG2 (CYP3A4) cells. On the contrary, in HepG2 cells, none of the selected PAs exhibited cytotoxic effects, probably due to the lack of CYPs. The role of CYP450 enzymes in metabolic activation was further confirmed using an inhibition assay and the activity of CYP450 enzymes was measured by a kinetic assay analyzing 7-benzyloxyresorufin-O-dealkylation (BROD). Furthermore, utilizing a glutathione-reductase-DTNB recycling assay indicated that glutathione might not play a critical role in PA-induced cytotoxicity. A micronucleus test was used for determining the PA-induced clastogenic genotoxicity. All selected PA congeners exhibited a concentration-dependent manner in the HepG2 (CYP3A4) cells. The relative potencies of PA congeners estimated from Alamar blue assay and micronucleus assay are generally consistent with the following ranking: lasiocarpine > senecionine > seneciphylline ≥ retrorsine > heliotrine (?) echimidine ≥ europine ≈ indicine ≈ lycopsamine ≈ monocrotaline. Compared to the iREP reported by Merz and Schrenk, monocrotaline exhibited considerably lower toxic potency. However, echimidine was more toxic than expected. On the other hand, mutagenicity was measured in Ames fluctuation assay with Salmonella typhimurium strains TA98 and TA100. None of the selected PA congeners up to 300 µM showed mutagenic effects despite metabolic activation with S9-mix

    Relative Toxicity of Select Dehydropyrrolizidine Alkaloids and Evaluation of a Heterozygous P53 Knockout Mouse Model for Dehydropyrrolizidine Alkaloid Induced Carcinogenesis

    Get PDF
    Dehydropyrrolizidine alkaloids (DHPAs) are a large group of globally important plant-derived pro-toxins that can contaminate or are naturally present in animal feed and the human food supply as well as herbal supplements. Their bioactive metabolites are potentially hepatotoxic, pneumotoxic, genotoxic and carcinogenic. Due to the difficulty in obtaining sufficient quantities of purified DHPAs, toxicity studies have largely relied on single intraperitoneal injections in rodent models, and carcinogenicity studies have been limited to a small handful of the hundreds of isolated DHPAs. To assess the relative toxicity of structurally diverse DHPAs in a more biologically relevant manner, male California White chicks were dosed orally with 0.01, 0.04, 0.13, or 0.26 mmol of seven different DHPAs and three DHPA N-oxides kg-1 bodyweight for 7 days. DHPAs were grouped in relation to their toxicity based on clinical, serum biochemical, and histopathological evaluations as well as tissue adduct accumulation rates. Using the same model, a reduced extract from comfrey, a commonly used DHPA containing herb, was compared to its two major constituent DHPAs, intermedine and lycopsamine. Based on the same parameters, the comfrey extract was more toxic than pure lycopsamine or intermedine. Addressing the need for a more sensitive carcinogenicity model, male heterozygous p53 knockout mice were treated with riddelliine 5, 15 or 45 mg kg–1 bodyweight day-1 by oral gavage for 14 days, or given a long-term treatment of riddelliine 1 mg kg-1 bodyweight day–1 in pelleted feed for 12 months. Exposure to riddelliine increased the odds of tumor development in a dose-responsive manner (odds ratio 2.05 and Wald 95% confidence limits between 1.2 and 3.4). The most common neoplasm was hepatic hemangiosarcoma, which is consistent with previously published lifetime rodent studies. The results of this research demonstrate that the California White chick model is sensitive for comparison of DHPA toxicity, and data obtained from this research can be used to validate previous DHPA toxicity research. It also demonstrates that comfrey toxicity may have been previously underestimated. The heterozygous p53 knockout mouse model is beneficial for further investigation of comparative carcinogenesis of structurally and toxicologically different DHPAs and their N-oxides

    Mode of action-based risk assessment of genotoxic carcinogens

    Get PDF
    The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as “omics” approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1_{1}, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs

    Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk

    Get PDF
    Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens
    corecore