582 research outputs found

    Optimizing Alzheimer's disease prediction using the nomadic people algorithm

    Get PDF
    The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a computing load to the detection method. Therefore, the purpose of this study is to reduce the high-dimensional data size by determining the most critical genes involved in Alzheimer's disease progression. A study also aims to predict patients with a subset of genes that cause Alzheimer's disease. This paper uses feature selection techniques like information gain (IG) and a novel metaheuristic optimization technique based on a swarm’s algorithm derived from nomadic people’s behavior (NPO). This suggested method matches the structure of these individuals' lives movements and the search for new food sources. The method is mostly based on a multi-swarm method; there are several clans, each seeking the best foraging opportunities. Prediction is carried out after selecting the informative genes of the support vector machine (SVM), frequently used in a variety of prediction tasks. The accuracy of the prediction was used to evaluate the suggested system's performance. Its results indicate that the NPO algorithm with the SVM model returns high accuracy based on the gene subset from IG and NPO methods

    Genes and Gene Networks Related to Age-associated Learning Impairments

    Get PDF
    The incidence of cognitive impairments, including age-associated spatial learning impairment (ASLI), has risen dramatically in past decades due to increasing human longevity. To better understand the genes and gene networks involved in ASLI, data from a number of past gene expression microarray studies in rats are integrated and used to perform a meta- and network analysis. Results from the data selection and preprocessing steps show that for effective downstream analysis to take place both batch effects and outlier samples must be properly removed. The meta-analysis undertaken in this research has identified significant differentially expressed genes across both age and ASLI in rats. Knowledge based gene network analysis shows that these genes affect many key functions and pathways in aged compared to young rats. The resulting changes might manifest as various neurodegenerative diseases/disorders or syndromic memory impairments at old age. Other changes might result in altered synaptic plasticity, thereby leading to normal, non-syndromic learning impairments such as ASLI. Next, I employ the weighted gene co-expression network analysis (WGCNA) on the datasets. I identify several reproducible network modules each highly significant with genes functioning in specific biological functional categories. It identifies a “learning and memory” specific module containing many potential key ASLI hub genes. Functions of these ASLI hub genes link a different set of mechanisms to learning and memory formation, which meta-analysis was unable to detect. This study generates some new hypotheses related to the new candidate genes and networks in ASLI, which could be investigated through future research

    Ensemble transcript interaction networks: A case study on Alzheimer's disease

    Get PDF
    Systems biology techniques are a topic of recent interest within the neurological field. Computational intelligence (CI) addresses this holistic perspective by means of consensus or ensemble techniques ultimately capable of uncovering new and relevant findings. In this paper, we propose the application of a CI approach based on ensemble Bayesian network classifiers and multivariate feature subset selection to induce probabilistic dependences that could match or unveil biological relationships. The research focuses on the analysis of high-throughput Alzheimer's disease (AD) transcript profiling. The analysis is conducted from two perspectives. First, we compare the expression profiles of hippocampus subregion entorhinal cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach to study four types of samples: EC and dentate gyrus (DG) samples from both patients and controls. Results disclose transcript interaction networks with remarkable structures and genes not directly related to AD by previous studies. The ensemble is able to identify a variety of transcripts that play key roles in other neurological pathologies. Classical statistical assessment by means of non-parametric tests confirms the relevance of the majority of the transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead to new findings in the pathogenesis and development of A

    Machine Learning for Detection of Cognitive Impairment

    Get PDF
    The detection of cognitive problems, especially in the early stages, is critical and the method by which it is diagnosed is manual and depends on one or more specialist doctors, to diagnose it as the cognitive decline escalates into the early stage of dementia, e.g., Alzheimer's disease (AD). The early stages of AD are very similar to Mild Cognitive Impairment (MCI); it is essential to identify the possible factors associated with the disease. This research aims to demonstrate that automated models can differentiate and classify MCI and AD in the early stages. The present research used a combination of Machine Learning (ML) algorithms to identify AD, using gene expressions. The algorithms used for the classification of cognitive problems and healthy people (control) were: Linear Regression, Decision Trees (DT), Naîve Bayes (NB) and Deep Learning (DP). The result of this research shows ML algorithms can identify AD, in early stages, with an 80% accuracy, using a Deep Learning (DL) algorithm.Fil: Diaz, Valeria. Universidad de Palermo. Facultad de Ingeniería; ArgentinaFil: Rodríguez, Guillermo Horacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentin

    Gene expression profile based classification models of psoriasis

    Get PDF
    AbstractPsoriasis is an autoimmune disease, which symptoms can significantly impair the patient's life quality. It is mainly diagnosed through the visual inspection of the lesion skin by experienced dermatologists. Currently no cure for psoriasis is available due to limited knowledge about its pathogenesis and development mechanisms. Previous studies have profiled hundreds of differentially expressed genes related to psoriasis, however with no robust psoriasis prediction model available. This study integrated the knowledge of three feature selection algorithms that revealed 21 features belonging to 18 genes as candidate markers. The final psoriasis classification model was established using the novel Incremental Feature Selection algorithm that utilizes only 3 features from 2 unique genes, IGFL1 and C10orf99. This model has demonstrated highly stable prediction accuracy (averaged at 99.81%) over three independent validation strategies. The two marker genes, IGFL1 and C10orf99, were revealed as the upstream components of growth signal transduction pathway of psoriatic pathogenesis

    Investigating data mining techniques for extracting information from Alzheimer\u27s disease data

    Get PDF
    Data mining techniques have been used widely in many areas such as business, science, engineering and more recently in clinical medicine. These techniques allow an enormous amount of high dimensional data to be analysed for extraction of interesting information as well as the construction of models for prediction. One of the foci in health related research is Alzheimer\u27s disease which is currently a non-curable disease where diagnosis can only be confirmed after death via an autopsy. Using multi-dimensional data and the applications of data mining techniques, researchers hope to find biomarkers that will diagnose Alzheimer\u27s disease as early as possible. The primary purpose of this research project is to investigate the application of data mining techniques for finding interesting biomarkers from a set of Alzheimer\u27s disease related data. The findings from this project will help to analyse the data more effectively and contribute to methods of providing earlier diagnosis of the disease

    Gene selection and classification in autism gene expression data

    Get PDF
    Autism spectrum disorders (ASD) are neurodevelopmental disorders that are currently diagnosed on the basis of abnormal stereotyped behaviour as well as observable deficits in communication and social functioning. Although a variety of candidate genes have been attributed to the disorder, no single gene is applicable to more than 1–2% of the general ASD population. Despite extensive efforts, definitive genes that contribute to autism susceptibility have yet to be identified. The major problems in dealing with the gene expression dataset of autism include the presence of limited number of samples and large noises due to errors of experimental measurements and natural variation. In this study, a systematic combination of three important filters, namely t-test (TT), Wilcoxon Rank Sum (WRS) and Feature Correlation (COR) are applied along with efficient wrapper algorithm based on geometric binary particle swarm optimization-support vector machine (GBPSO-SVM), aiming at selecting and classifying the most attributed genes of autism. A new approach based on the criterion of median ratio, mean ratio and variance deviations is also applied to reduce the initial dataset prior to its involvement. Results showed that the most discriminative genes that were identified in the first and last selection steps concluded the presence of a repetitive gene (CAPS2), which was assigned as the most ASD risk gene. The fused result of genes subset that were selected by the GBPSO-SVM algorithm increased the classification accuracy to about 92.10%, which is higher than those reported in literature for the same autism dataset. Noticeably, the application of ensemble using random forest (RF) showed better performance compared to that of previous studies. However, the ensemble approach based on the employment of SVM as an integrator of the fused genes from the output branches of GBPSO-SVM outperformed the RF integrator. The overall improvement was ascribed to the selection strategies that were taken to reduce the dataset and the utilization of efficient wrapper based GBPSO-SVM algorithm

    Use of Large, Immunosignature Databases to Pose New Questions About Infection and Health Status

    Get PDF
    abstract: Immunosignature is a technology that retrieves information from the immune system. The technology is based on microarrays with peptides chosen from random sequence space. My thesis focuses on improving the Immunosignature platform and using Immunosignatures to improve diagnosis for diseases. I first contributed to the optimization of the immunosignature platform by introducing scoring metrics to select optimal parameters, considering performance as well as practicality. Next, I primarily worked on identifying a signature shared across various pathogens that can distinguish them from the healthy population. I further retrieved consensus epitopes from the disease common signature and proposed that most pathogens could share the signature by studying the enrichment of the common signature in the pathogen proteomes. Following this, I worked on studying cancer samples from different stages and correlated the immune response with whether the epitope presented by tumor is similar to the pathogen proteome. An effective immune response is defined as an antibody titer increasing followed by decrease, suggesting elimination of the epitope. I found that an effective immune response usually correlates with epitopes that are more similar to pathogens. This suggests that the immune system might occupy a limited space and can be effective against only certain epitopes that have similarity with pathogens. I then participated in the attempt to solve the antibiotic resistance problem by developing a classification algorithm that can distinguish bacterial versus viral infection. This algorithm outperforms other currently available classification methods. Finally, I worked on the concept of deriving a single number to represent all the data on the immunosignature platform. This is in resemblance to the concept of temperature, which is an approximate measurement of whether an individual is healthy. The measure of Immune Entropy was found to work best as a single measurement to describe the immune system information derived from the immunosignature. Entropy is relatively invariant in healthy population, but shows significant differences when comparing healthy donors with patients either infected with a pathogen or have cancer.Dissertation/ThesisDoctoral Dissertation Molecular and Cellular Biology 201

    DETECTING CANCER-RELATED GENES AND GENE-GENE INTERACTIONS BY MACHINE LEARNING METHODS

    Get PDF
    To understand the underlying molecular mechanisms of cancer and therefore to improve pathogenesis, prevention, diagnosis and treatment of cancer, it is necessary to explore the activities of cancer-related genes and the interactions among these genes. In this dissertation, I use machine learning and computational methods to identify differential gene relations and detect gene-gene interactions. To identify gene pairs that have different relationships in normal versus cancer tissues, I develop an integrative method based on the bootstrapping K-S test to evaluate a large number of microarray datasets. The experimental results demonstrate that my method can find meaningful alterations in gene relations. For gene-gene interaction detection, I propose to use two Bayesian Network based methods: DASSO-MB (Detection of ASSOciations using Markov Blanket) and EpiBN (Epistatic interaction detection using Bayesian Network model) to address the two critical challenges: searching and scoring. DASSO-MB is based on the concept of Markov Blanket in Bayesian Networks. In EpiBN, I develop a new scoring function, which can reflect higher-order gene-gene interactions and detect the true number of disease markers, and apply a fast Branch-and-Bound (B&B) algorithm to learn the structure of Bayesian Network. Both DASSO-MB and EpiBN outperform some other commonly-used methods and are scalable to genome-wide data
    • …
    corecore