1,106 research outputs found

    A novel approach to infer orthologs and produce gene annotations at scale

    Get PDF
    Aufgrund von Fortschritten im Bereich der DNA-Sequenzierung hat die Anzahl verfügbarer Genome in den letzten Jahrzehnten rapide zugenommen. Tausende bereits heute zur Verfügung stehende Genome ermöglichen detaillierte vergleichende Analysen, welche für die Beantwortung relevanter Fragestellungen essentiell sind. Dies betrifft die Assoziation von Genotyp und Phänotyp, die Erforschung der Besonderheiten komplexer Proteine und die Weiterentwicklung medizinischer Anwendungen. Um all diese Fragen zu beantworten ist es notwendig, proteinkodierende Gene in neu sequenzierten Genomen zu annotieren und ihre Homologieverhältnisse zu bestimmen. Die bestehenden Methoden der Genomanalyse sind jedoch nicht für Menge heutzutage anfallender Datenmengen ausgelegt. Daher ist die zentrale Herausforderung in der vergleichenden Genomik nicht die Anzahl der verfügbaren Genome, sondern die Entwicklung neuer Methoden zur Datenanalyse im Hochdurchsatz. Um diese Probleme zu adressieren, schlage ich ein neues Paradigma der Annotation von Genomen und der Inferenz von Homologieverhältnissen vor, welches auf dem Alignment gesamter Genome basiert. Während die derzeit angewendeten Methoden zur Gen-Annotation und Bestimmung der Homologie ausschließlich auf codierenden Sequenzen beruhen, könnten durch die Einbeziehung des umgebenden neutral evolvierenden genomischen Kontextes bessere und vollständigere Annotationen vorgenommen werden. Die Verwendung von Genom-Alignments ermöglicht eine beliebige Skalierung der vorgeschlagenen Methodik auf Tausende Genome. In dieser Arbeit stelle ich TOGA (Tool to infer Orthologs from Genome Alignments) vor, eine bioinformatische Methode, welche dieses Konzept implementiert und Homologie- Klassifizierung und Gen-Annotation in einer einzelnen Pipeline kombiniert. TOGA verwendet Machine-Learning, um Orthologe von Paralogen basierend auf dem Alignment von intronischer und intergener Regionen zu unterscheiden. Die Ergebnisse des Benchmarkings zeigen, dass TOGA die herkömmlichen Ansätze innerhalb der Placentalia übertrifft. TOGA klassifiziert Homologieverhältnisse mit hoher Präzision und identifiziert zuverlässig inaktivierte Gene als solchet. Frühere Versionen von TOGA fanden in mehreren Studien Anwendung und wurden in zwei Publikationen verwendet. Außerdem wurde TOGA erfolgreich zur Annotation von 500 Säugetiergeenomen verwendet, dies ist der bisher umfangreichste solche Datensatz. Diese Ergebnisse zeigen, dass TOGA das Potenzial hat, sich zu einer etablierten Methode zur Gen-Annotation zu entwickeln und die derzeit angewandten Techniken zu ergänzen

    Detecting and comparing non-coding RNAs in the high-throughput era.

    Get PDF
    In recent years there has been a growing interest in the field of non-coding RNA. This surge is a direct consequence of the discovery of a huge number of new non-coding genes and of the finding that many of these transcripts are involved in key cellular functions. In this context, accurately detecting and comparing RNA sequences has become important. Aligning nucleotide sequences is a key requisite when searching for homologous genes. Accurate alignments reveal evolutionary relationships, conserved regions and more generally any biologically relevant pattern. Comparing RNA molecules is, however, a challenging task. The nucleotide alphabet is simpler and therefore less informative than that of amino-acids. Moreover for many non-coding RNAs, evolution is likely to be mostly constrained at the structural level and not at the sequence level. This results in very poor sequence conservation impeding comparison of these molecules. These difficulties define a context where new methods are urgently needed in order to exploit experimental results to their full potential. This review focuses on the comparative genomics of non-coding RNAs in the context of new sequencing technologies and especially dealing with two extremely important and timely research aspects: the development of new methods to align RNAs and the analysis of high-throughput data

    Kartezio: Evolutionary Design of Explainable Pipelines for Biomedical Image Analysis

    Full text link
    An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. Crucially however, these frameworks require large human-annotated datasets for training and the resulting models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming based computational strategy that generates transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets, a feature which confers tremendous flexibility, speed, and functionality to this approach. We also deployed Kartezio to solve semantic and instance segmentation problems in four real-world Use Cases, and showcase its utility in imaging contexts ranging from high-resolution microscopy to clinical pathology. By successfully implementing Kartezio on a portfolio of images ranging from subcellular structures to tumoral tissue, we demonstrated the flexibility, robustness and practical utility of this fully explicable evolutionary designer for semantic and instance segmentation.Comment: 36 pages, 6 main Figures. The Extended Data Movie is available at the following link: https://www.youtube.com/watch?v=r74gdzb6hdA. The source code is available on Github: https://github.com/KevinCortacero/Kartezi

    Unified Alignment of Protein-Protein Interaction Networks

    Get PDF
    Paralleling the increasing availability of protein-protein interaction (PPI) network data, several network alignment methods have been proposed. Network alignments have been used to uncover functionally conserved network parts and to transfer annotations. However, due to the computational intractability of the network alignment problem, aligners are heuristics providing divergent solutions and no consensus exists on a gold standard, or which scoring scheme should be used to evaluate them. We comprehensively evaluate the alignment scoring schemes and global network aligners on large scale PPI data and observe that three methods, HUBALIGN, L-GRAAL and NATALIE, regularly produce the most topologically and biologically coherent alignments. We study the collective behaviour of network aligners and observe that PPI networks are almost entirely aligned with a handful of aligners that we unify into a new tool, Ulign. Ulign enables complete alignment of two networks, which traditional global and local aligners fail to do. Also, multiple mappings of Ulign define biologically relevant soft clusterings of proteins in PPI networks, which may be used for refining the transfer of annotations across networks. Hence, PPI networks are already well investigated by current aligners, so to gain additional biological insights, a paradigm shift is needed. We propose such a shift come from aligning all available data types collectively rather than any particular data type in isolation from others
    corecore