969 research outputs found

    A new reference genome assembly for the microcrustacean Daphnia pulex

    Get PDF
    Comparing genomes of closely related genotypes from populations with distinct demographic histories can help reveal the impact of effective population size on genome evolution. For this purpose, we present a high quality genome assembly of Daphnia pulex (PA42), and compare this with the first sequenced genome of this species (TCO), which was derived from an isolate from a population with >90% reduction in nucleotide diversity. PA42 has numerous similarities to TCO at the gene level, with an average amino acid sequence identity of 98.8 and >60% of orthologous proteins identical. Nonetheless, there is a highly elevated number of genes in the TCO genome annotation, with similar to 7000 excess genes appearing to be false positives. This view is supported by the high GC content, lack of introns, and short length of these suspicious gene annotations. Consistent with the view that reduced effective population size can facilitate the accumulation of slightly deleterious genomic features, we observe more proliferation of transposable elements (TEs) and a higher frequency of gained introns in the TCO genome

    Development and Evolution of the Mammalian Cerebellum at Single Cell Resolution

    Get PDF
    Originally thought to only take part in motor control, the cerebellum emerged over the last decades as an important organ in various higher cognitive functions, such as learning and speech. Besides this, the cerebellum is associated to various diseases, such as spinocerebellar ataxia, autism spectrum disorder, and medulloblastoma. The basic structure and connective properties of it are well understood, but single-cell-technologies made it possible to study the cerebellum at higher resolution. Many questions about molecular details of its development and evolution are still not answered. Cerebella are present in all jawed vertebrates, though structural diversity is macroscopic and microscopic detectable, such as the number of deep nuclei, the presence of the vermis, or the mode of production of one of the most important cell types in the cerebellum - granule cells. Using single-nucleus RNA-sequencing (snRNA-seq) and bioinformatic approaches, I studied cerebellum data of human, mouse (Mus musculus) and opossum (Monodelphis domestica). The dataset contained samples spanning the organs development at high temporal resolution. It was possible to track the differentiation of the major cerebellar neuronal and glial cell types, as well as identify states and subtypes. This generated a comprehensive map of cellular complexity through eutherian (human and mouse) and marsupial (opossum) development. Leveraging the evolutionary distance of approximately 160 million years between the eutherian and marsupial lineage, conserved and diverged cell type marker genes could be identified which might be promising candidates for understanding the basic blueprint of cerebellar cell type identity. Stage correspondence mapping aligned the vastly different developmental time frames of the three studied species and allowed the identification of a two-fold increase in Purkinje cell progenitors in the human lineage, which might be connected to a recently identified human-specific secondary ventricular zone progenitor pool. It was possible to model the differentiation path of granule and Purkinje cells from early progenitors to mature neurons. Conserved and diverged gene expression trajectories were discovered. Using in vitro and in vivo intollerance scores, I could show that genes which are dynamically expressed during differentiation show higher functional constraint as non-dynamic genes, fitting to previous bulk-RNA-seq studies, showing similar results across the development of the full organ. Some orthologs with diverging patterns were disease-associated genes, which could have implications on clinical research on conditions like autism spectrum disorders and medulloblastoma. Furthermore, fundamental changes of gene expressions, established as gain or loss of expression within a cell type and species, were detected. Affected genes showed decreased functional constraint, verifying evolutionary principles on single cell scale. Taken together, this study shows the strength of state of the art methodology combined with high resolution developmental sampling in an evolution biological context to discover fundamental principles of organ development at single-cell scale

    Graph-based methods for large-scale protein classification and orthology inference

    Get PDF
    The quest for understanding how proteins evolve and function has been a prominent and costly human endeavor. With advances in genomics and use of bioinformatics tools, the diversity of proteins in present day genomes can now be studied more efficiently than ever before. This thesis describes computational methods suitable for large-scale protein classification of many proteomes of diverse species. Specifically, we focus on methods that combine unsupervised learning (clustering) techniques with the knowledge of molecular phylogenetics, particularly that of orthology. In chapter 1 we introduce the biological context of protein structure, function and evolution, review the state-of-the-art sequence-based protein classification methods, and then describe methods used to validate the predictions. Finally, we present the outline and objectives of this thesis. Evolutionary (phylogenetic) concepts are instrumental in studying subjects as diverse as the diversity of genomes, cellular networks, protein structures and functions, and functional genome annotation. In particular, the detection of orthologous proteins (genes) across genomes provides reliable means to infer biological functions and processes from one organism to another. Chapter 2 evaluates the available computational tools, such as algorithms and databases, used to infer orthologous relationships between genes from fully sequenced genomes. We discuss the main caveats of large-scale orthology detection in general as well as the merits and pitfalls of each method in particular. We argue that establishing true orthologous relationships requires a phylogenetic approach which combines both trees and graphs (networks), reliable species phylogeny, genomic data for more than two species, and an insight into the processes of molecular evolution. Also proposed is a set of guidelines to aid researchers in selecting the correct tool. Moreover, this review motivates further research in developing reliable and scalable methods for functional and phylogenetic classification of large protein collections. Chapter 3 proposes a framework in which various protein knowledge-bases are combined into unique network of mappings (links), and hence allows comparisons to be made between expert curated and fully-automated protein classifications from a single entry point. We developed an integrated annotation resource for protein orthology, ProGMap (Protein Group Mappings, http://www.bioinformatics.nl/progmap), to help researchers and database annotators who often need to assess the coherence of proposed annotations and/or group assignments, as well as users of high throughput methodologies (e.g., microarrays or proteomics) who deal with partially annotated genomic data. ProGMap is based on a non-redundant dataset of over 6.6 million protein sequences which is mapped to 240,000 protein group descriptions collected from UniProt, RefSeq, Ensembl, COG, KOG, OrthoMCL-DB, HomoloGene, TRIBES and PIRSF using a fast and fully automated sequence-based mapping approach. The ProGMap database is equipped with a web interface that enables queries to be made using synonymous sequence identifiers, gene symbols, protein functions, and amino acid or nucleotide sequences. It incorporates also services, namely BLAST similarity search and QuickMatch identity search, for finding sequences similar (or identical) to a query sequence, and tools for presenting the results in graphic form. Graphs (networks) have gained an increasing attention in contemporary biology because they have enabled complex biological systems and processes to be modeled and better understood. For example, protein similarity networks constructed of all-versus-all sequence comparisons are frequently used to delineate similarity groups, such as protein families or orthologous groups in comparative genomics studies. Chapter 4.1 presents a benchmark study of freely available graph software used for this purpose. Specifically, the computational complexity of the programs is investigated using both simulated and biological networks. We show that most available software is not suitable for large networks, such as those encountered in large-scale proteome analyzes, because of the high demands on computational resources. To address this, we developed a fast and memory-efficient graph software, netclust (http://www.bioinformatics.nl/netclust/), which can scale to large protein networks, such as those constructed of millions of proteins and sequence similarities, on a standard computer. An extended version of this program called Multi-netclust is presented in chapter 4.2. This tool that can find connected clusters of data presented by different network data sets. It uses user-defined threshold values to combine the data sets in such a way that clusters connected in all or in either of the networks can be retrieved efficiently. Automated protein sequence clustering is an important task in genome annotation projects and phylogenomic studies. During the past years, several protein clustering programs have been developed for delineating protein families or orthologous groups from large sequence collections. However, most of these programs have not been benchmarked systematically, in particular with respect to the trade-off between computational complexity and biological soundness. In chapter 5 we evaluate three best known algorithms on different protein similarity networks and validation (or 'gold' standard) data sets to find out which one can scale to hundreds of proteomes and still delineate high quality similarity groups at the minimum computational cost. For this, a reliable partition-based approach was used to assess the biological soundness of predicted groups using known protein functions, manually curated protein/domain families and orthologous groups available in expert-curated databases. Our benchmark results support the view that a simple and computationally cheap method such as netclust can perform similar to and in cases even better than more sophisticated, yet much more costly methods. Moreover, we introduce an efficient graph-based method that can delineate protein orthologs of hundreds of proteomes into hierarchical similarity groups de novo. The validity of this method is demonstrated on data obtained from 347 prokaryotic proteomes. The resulting hierarchical protein classification is not only in agreement with manually curated classifications but also provides an enriched framework in which the functional and evolutionary relationships between proteins can be studied at various levels of specificity. Finally, in chapter 6 we summarize the main findings and discuss the merits and shortcomings of the methods developed herein. We also propose directions for future research. The ever increasing flood of new sequence data makes it clear that we need improved tools to be able to handle and extract relevant (orthological) information from these protein data. This thesis summarizes these needs and how they can be addressed by the available tools, or be improved by the new tools that were developed in the course of this research. <br/

    De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly

    Get PDF
    Background: The olive fruit fly, Bactrocera oleae, is the most important pest in the olive fruit agribusiness industry. This is because female flies lay their eggs in the unripe fruits and upon hatching the larvae feed on the fruits thus destroying them. The lack of a high-quality genome and other genomic and transcriptomic data has hindered progress in understanding the fly’s biology and proposing alternative control methods to pesticide use. Results: Genomic DNA was sequenced from male and female Demokritos strain flies, maintained in the laboratory for over 45 years. We used short-, mate-pair-, and long-read sequencing technologies to generate a combined male-female genome assembly (GenBank accession GCA_001188975.2). Genomic DNA sequencing from male insects using 10x Genomics linked-reads technology followed by mate-pair and long-read scaffolding and gap-closing generated a highly contiguous 489 Mb genome with a scaffold N50 of 4.69 Mb and L50 of 30 scaffolds (GenBank accession GCA_001188975.4). RNA-seq data generated from 12 tissues and/or developmental stages allowed for genome annotation. Short reads from both males and females and the chromosome quotient method enabled identification of Y-chromosome scaffolds which were extensively validated by PCR. Conclusions: The high-quality genome generated represents a critical tool in olive fruit fly research. We provide an extensive RNA-seq data set, and genome annotation, critical towards gaining an insight into the biology of the olive fruit fly. In addition, elucidation of Y-chromosome sequences will advance our understanding of the Y-chromosome’s organization, function and evolution and is poised to provide avenues for sterile insect technique approaches

    Computational Biology Methods and Their Application to the Comparative Genomics of Endocellular Symbiotic Bacteria of Insects

    Get PDF
    Comparative genomics has become a real tantalizing challenge in the postgenomic era. This fact has been mostly magnified by the plethora of new genomes becoming available in a daily bases. The overwhelming list of new genomes to compare has pushed the field of bioinformatics and computational biology forward toward the design and development of methods capable of identifying patterns in a sea of swamping data noise. Despite many advances made in such endeavor, the ever-lasting annoying exceptions to the general patterns remain to pose difficulties in generalizing methods for comparative genomics. In this review, we discuss the different tools devised to undertake the challenge of comparative genomics and some of the exceptions that compromise the generality of such methods. We focus on endosymbiotic bacteria of insects because of their genomic dynamics peculiarities when compared to free-living organisms

    Non-coding genome contributions to the development and evolution of mammalian organs

    Get PDF
    Protein-coding sequences only cover 1-2% of a typical mammalian genome. The remaining non-coding space hides thousands of genomic elements, some of which act via their DNA sequence while others are transcribed into non-coding RNAs. Many well-characterized non-coding elements are involved in the regulation of other genes, a process essential for the emergence of different cell types and organs during development. Changes in the expression of conserved genes during development are in turn thought to facilitate evolutionary innovation in form and function. Thus, non-coding genomic elements are hypothesized to play important roles in developmental and evolutionary processes. However, challenges related to the identification and characterization of these elements, in particular in non-model organisms, has limited the study of their overall contributions to mammalian organ development and evolution. During my dissertation work, I addressed this gap by studying two major classes of non-coding elements, long non-coding RNAs (lncRNAs) and cis-regulatory elements (CREs). In the first part of my thesis, I analyzed the expression profiles of lncRNAs during the development of seven major organs in six mammals and a bird. I showed that, unlike protein-coding genes, only a small fraction of lncRNAs is expressed in reproducibly dynamic patterns during organ development. These lncRNAs are enriched for a series of features associated with functional relevance, including increased evolutionary conservation and regulatory complexity, highlighting them as candidates for further molecular characterization. I then associated these lncRNAs with specific genes and functions based on their spatiotemporal expression profiles. My analyses also revealed differences in lncRNA contributions across organs and developmental stages, identifying a developmental transition from broadly expressed and conserved lncRNAs towards an increasing number of lineage- and organ-specific lncRNAs. Following up on these global analyses, I then focused on a newly-identified lncRNA in the marsupial opossum, Female Specific on chromosome X (FSX). The broad and likely autonomous female-specific expression of FSX suggests a role in marsupial X-chromosome inactivation (XCI). I showed that FSX shares many expression and sequence features with another lncRNA, RSX — a known regulator of XCI in marsupials. Comparisons to other marsupials revealed that both RSX and FSX emerged in the common marsupial ancestor and have since been preserved in marsupial genomes, while their broad and female-specific expression has been retained for at least 76 million years of evolution. Taken together, my analyses highlighted FSX as a novel candidate for regulating marsupial XCI. In the third part of this work, I shifted my focus to CREs and their cell type-specific activities in the developing mouse cerebellum. After annotating cerebellar cell types and states based on single-cell chromatin accessibility data, I identified putative CREs and characterized their spatiotemporal activity across cell types and developmental stages. Focusing on progenitor cells, I described temporal changes in CRE activity that are shared between early germinal zones, supporting a model of cell fate induction through common developmental cues. By examining chromatin accessibility dynamics during neuronal differentiation, I revealed a gradual divergence in the regulatory programs of major cerebellar neuron types. In the final part, I explored the evolutionary histories of CREs and their potential contributions to gene expression changes between species. By comparing mouse CREs to vertebrate genomes and chromatin accessibility profiles from the marsupial opossum, I identified a temporal decrease in CRE conservation, which is shared across cerebellar cell types. However, I also found differences in constraint between cell types, with microglia having the fastest evolving CREs in the mouse cerebellum. Finally, I used deep learning models to study the regulatory grammar of cerebellar cell types in human and mouse, showing that the sequence rules determining CRE activity are conserved across mammals. I then used these models to retrace the evolutionary changes leading to divergent CRE activity between species. Collectively, my PhD work provides insights into the evolutionary dynamics of non-coding genes and regulatory elements, the processes associated with their conservation, and their contributions to the development and evolution of mammalian cell types and organs

    Advances and Applications in the Quest for Orthologs

    Get PDF
    Gene families evolve by the processes of speciation (creating orthologs), gene duplication (paralogs) and horizontal gene transfer (xenologs), in addition to sequence divergence and gene loss. Orthologs in particular play an essential role in comparative genomics and phylogenomic analyses. With the continued sequencing of organisms across the tree of life, the data are available to reconstruct the unique evolutionary histories of tens of thousands of gene families. Accurate reconstruction of these histories, however, is a challenging computational problem, and the focus of the Quest for Orthologs Consortium. We review the recent advances and outstanding challenges in this field, as revealed at a symposium and meeting held at the University of Southern California in 2017. Key advances have been made both at the level of orthology algorithm development and with respect to coordination across the community of algorithm developers and orthology end-users. Applications spanned a broad range, including gene function prediction, phylostratigraphy, genome evolution, and phylogenomics. The meetings highlighted the increasing use of meta-analyses integrating results from multiple different algorithms, and discussed ongoing challenges in orthology inference as well as the next steps toward improvement and integration of orthology resources

    Swine blood transcriptomics: Application and advancement

    Get PDF
    Improving swine feed efficiency (FE) by selection for low residual feed intake (RFI) is of practical interest. However, whether selection for low RFI compromises a pig’s immune response is not clear. In addition, current RFI-based selection for improving feed efficiency was expensive and time-consuming. Seeking alternative tools to facilitate selection, such as predictive biomarkers for RFI, is of great interest. The objectives of this thesis are as follows: (1) to investigate whether selection for low RFI compromise a pig’s immune response; (2) to develop candidate biomarkers applicable at early growth stage for predicting RFI at late growth stage; (3) to improve the annotation of the porcine blood transcriptome. In Chapter 2, pigs of two lines divergently selected for RFI were injected with lipopolysaccharide (LPS). Transcriptomes of peripheral blood at baseline and multi-time points post injection were profiled by RNA-seq. LPS injection induced systemic inflammatory response in both RFI lines. However, no significant differences were detected in dynamics of body temperature, blood cell count and cytokine levels during the time course. Only a very small number of differentially expressed genes (DEGs) were detected between the lines over all time points, though ~ 50% of blood genes were differentially expressed post LPS injection compared to baseline for each line. The two lines were largely similar in most biological pathways and processes studied. Minor differences included a slightly lower level of inflammatory response in the low- versus high-RFI animals. Cross-species comparison showed that humans and pigs responded to LPS stimulation similarly at both the gene and pathway levels, though pigs are more tolerant to LPS than humans. In Chapter 3, post-weaning blood transcriptomic differences between the two lines were studied by RNA-seq. DEGs between the lines significantly overlapped gene sets associated with human diseases, such as eating disorders, hyperphagia and mitochondrial disease. Genes functioning in the mitochondrion and proteasome, and signaling had lower and higher expression in the low-RFI group relative to the high-RFI group, respectively. Expression levels of five differentially expressed genes between the two groups were significantly associated with individual animal’s RFI values. These five genes were candidate biomarkers for predicting RFI. Given limitations of current annotation of the porcine reference genome, a high-quality annotated transcriptome of porcine peripheral blood was built in the last study via a hybrid assembly strategy with a large amount of blood RNA-seq data from studies mentioned above and public databases. Taken together, this work provides evidence that selection for low RFI did not significantly compromise pigs’ immune response to systemic inflammation, offers a few candidate biomarkers for predicting RFI to facilitate RFI-based selection, and significantly advances the structural and functional annotation of porcine blood transcriptome
    corecore