2,956 research outputs found

    Re-Annotator: Annotation Pipeline for Microarray Probe Sequences.

    Get PDF
    Microarray technologies are established approaches for high throughput gene expression, methylation and genotyping analysis. An accurate mapping of the array probes is essential to generate reliable biological findings. However, manufacturers of the microarray platforms typically provide incomplete and outdated annotation tables, which often rely on older genome and transcriptome versions that differ substantially from up-to-date sequence databases. Here, we present the Re-Annotator, a re-annotation pipeline for microarray probe sequences. It is primarily designed for gene expression microarrays but can also be adapted to other types of microarrays. The Re-Annotator uses a custom-built mRNA reference database to identify the positions of gene expression array probe sequences. We applied Re-Annotator to the Illumina Human-HT12 v4 microarray platform and found that about one quarter (25%) of the probes differed from the manufacturer's annotation. In further computational experiments on experimental gene expression data, we compared Re-Annotator to another probe re-annotation tool, ReMOAT, and found that Re-Annotator provided an improved re-annotation of microarray probes. A thorough re-annotation of probe information is crucial to any microarray analysis. The Re-Annotator pipeline is freely available at http://sourceforge.net/projects/reannotator along with re-annotated files for Illumina microarrays HumanHT-12 v3/v4 and MouseRef-8 v2

    Re-Annotator: Annotation Pipeline for Microarray Probe Sequences

    Get PDF
    Microarray technologies are established approaches for high throughput gene expression, methylation and genotyping analysis. An accurate mapping of the array probes is essential to generate reliable biological findings. However, manufacturers of the microarray platforms typically provide incomplete and outdated annotation tables, which often rely on older genome and transcriptome versions that differ substantially from up-to-date sequence databases. Here, we present the Re-Annotator, a re-annotation pipeline for microarray probe sequences. It is primarily designed for gene expression microarrays but can also be adapted to other types of microarrays. The Re-Annotator uses a custom-built mRNA reference database to identify the positions of gene expression array probe sequences. We applied Re-Annotator to the Illumina Human-HT12 v4 microarray platform and found that about one quarter (25%) of the probes differed from the manufacturer's annotation. In further computational experiments on experimental gene expression data, we compared Re-Annotator to another probe re-annotation tool, ReMOAT, and found that Re-Annotator provided an improved re-annotation of microarray probes. A thorough re-annotation of probe information is crucial to any microarray analysis. The Re-Annotator pipeline is freely available at http://sourceforge.net/projects/reannotator along with re-annotated files for Illumina microarrays HumanHT-12 v3/v4 and MouseRef-8 v2

    Wormbase Curation Interfaces and Tools

    Get PDF
    Curating biological information from the published literature can be time- and labor-intensive especially without automated tools. WormBase1 has adopted several curation interfaces and tools, most of which were built in-house, to help curators recognize and extract data more efficiently from the literature. These tools range from simple computer interfaces for data entry to employing scripts that take advantage of complex text extraction algorithms, which automatically identify specific objects in a paper and presents them to the curator for curation. By using these in-house tools, we are also able to tailor the tool to the individual needs and preferences of the curator. For example, Gene Ontology Cellular Component and gene-gene interaction curators employ the text mining software Textpresso2 to indentify, retrieve, and extract relevant sentences from the full text of an article. The curators then use a web-based curation form to enter the data into our local database. For transgene and antibody curation, curators use the publicly available Phenote ontology annotation curation interface (developed by the Berkeley Bioinformatics Open-Source Projects (BBOP)), which we have adapted with datatype specific configurations. This tool has been used as a basis for developing our own Ontology Annotator tool, which is being used by our phenotype and gene ontology curators. For RNAi curation, we created web-based submission forms that allow the curator to efficiently capture all relevant information. In all cases, the data undergoes a final scripted data dump step to make sure all the information conforms into a readable file by our object oriented database

    NCBO Ontology Recommender 2.0: An Enhanced Approach for Biomedical Ontology Recommendation

    Get PDF
    Biomedical researchers use ontologies to annotate their data with ontology terms, enabling better data integration and interoperability. However, the number, variety and complexity of current biomedical ontologies make it cumbersome for researchers to determine which ones to reuse for their specific needs. To overcome this problem, in 2010 the National Center for Biomedical Ontology (NCBO) released the Ontology Recommender, which is a service that receives a biomedical text corpus or a list of keywords and suggests ontologies appropriate for referencing the indicated terms. We developed a new version of the NCBO Ontology Recommender. Called Ontology Recommender 2.0, it uses a new recommendation approach that evaluates the relevance of an ontology to biomedical text data according to four criteria: (1) the extent to which the ontology covers the input data; (2) the acceptance of the ontology in the biomedical community; (3) the level of detail of the ontology classes that cover the input data; and (4) the specialization of the ontology to the domain of the input data. Our evaluation shows that the enhanced recommender provides higher quality suggestions than the original approach, providing better coverage of the input data, more detailed information about their concepts, increased specialization for the domain of the input data, and greater acceptance and use in the community. In addition, it provides users with more explanatory information, along with suggestions of not only individual ontologies but also groups of ontologies. It also can be customized to fit the needs of different scenarios. Ontology Recommender 2.0 combines the strengths of its predecessor with a range of adjustments and new features that improve its reliability and usefulness. Ontology Recommender 2.0 recommends over 500 biomedical ontologies from the NCBO BioPortal platform, where it is openly available.Comment: 29 pages, 8 figures, 11 table

    Building a semantically annotated corpus of clinical texts

    Get PDF
    In this paper, we describe the construction of a semantically annotated corpus of clinical texts for use in the development and evaluation of systems for automatically extracting clinically significant information from the textual component of patient records. The paper details the sampling of textual material from a collection of 20,000 cancer patient records, the development of a semantic annotation scheme, the annotation methodology, the distribution of annotations in the final corpus, and the use of the corpus for development of an adaptive information extraction system. The resulting corpus is the most richly semantically annotated resource for clinical text processing built to date, whose value has been demonstrated through its use in developing an effective information extraction system. The detailed presentation of our corpus construction and annotation methodology will be of value to others seeking to build high-quality semantically annotated corpora in biomedical domains

    AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system

    Get PDF
    We have implemented a genome annotation system for prokaryotes called AGMIAL. Our approach embodies a number of key principles. First, expert manual annotators are seen as a critical component of the overall system; user interfaces were cyclically refined to satisfy their needs. Second, the overall process should be orchestrated in terms of a global annotation strategy; this facilitates coordination between a team of annotators and automatic data analysis. Third, the annotation strategy should allow progressive and incremental annotation from a time when only a few draft contigs are available, to when a final finished assembly is produced. The overall architecture employed is modular and extensible, being based on the W3 standard Web services framework. Specialized modules interact with two independent core modules that are used to annotate, respectively, genomic and protein sequences. AGMIAL is currently being used by several INRA laboratories to analyze genomes of bacteria relevant to the food-processing industry, and is distributed under an open source license

    Improving dbNSFP

    Get PDF
    IMPROVING dbNSFP Mingyao Lu, B.S. Advisory Professor: Xiaoming Liu, Ph.D. The analysis and interpretation of DNA variation are very important for the Whole Exome studies (WES). Genome research has focused on single nucleotide variants (SNVs). Since indels are as important as SNVs, especially indels in coding regions are often candidates of disease-causing variants, thus, it is necessary to expand the focus to include indel mutations. The goal of my project is to provide an automatic annotation pipeline to the WES based disease studies project by extending the dbNSFP with a tool for automated indel annotation and deleteriousness prediction. The current sequencing results typically include both SNVs and indels. Although there have been many available tools to integrate functional prediction/annotations for SNV effects, there are no such tools for indels to my knowledge. Therefore, the aim of this thesis was to add deleteriousness prediction scores to indel annotation based on gene models, including CADD, SIFT, and PROVEAN. All those scores can be calculated on-the-fly after installing resources locally. A Docker implementing the indel annotation and deleteriousness prediction has been developed and ready to be deployed from the cloud

    brat: a Web-based Tool for NLP-Assisted Text Annotation

    Get PDF
    We introduce the brat rapid annotation tool (BRAT), an intuitive web-based tool for text annotation supported by Natural Language Processing (NLP) technology. BRAT has been developed for rich structured annotation for a variety of NLP tasks and aims to support manual curation efforts and increase annotator productivity using NLP techniques. We discuss several case studies of real-world annotation projects using pre-release versions of BRAT and present an evaluation of annotation assisted by semantic class disambiguation on a multicategory entity mention annotation task, showing a 15 % decrease in total annotation time. BRAT is available under an opensource license from
    • …
    corecore