8,105 research outputs found

    Classification of Stabilometric Time-Series Using an Adaptive Fuzzy Inference Neural Network System

    Full text link
    Stabilometry is a branch of medicine that studies balance-related human functions. The analysis of stabilometric-generated time series can be very useful to the diagnosis and treatment balance-related dysfunctions such as dizziness. In stabilometry, the key nuggets of information in a time series signal are concentrated within definite time periods known as events. In this study, a feature extraction scheme has been developed to identify and characterise the events. The proposed scheme utilises a statistical method that goes through the whole time series from the start to the end, looking for the conditions that define events, according to the experts¿ criteria. Based on these extracted features, an Adaptive Fuzzy Inference Neural Network (AFINN) has been applied for the classification of stabilometric signals. The experimental results validated the proposed methodology

    Dual-wavelength thulium fluoride fiber laser based on SMF-TMSIF-SMF interferometer as potential source for microwave generationin 100-GHz region

    Get PDF
    A dual-wavelength thulium-doped fluoride fiber (TDFF) laser is presented. The generation of the TDFF laser is achieved with the incorporation of a single modemultimode- single mode (SMS) interferometer in the laser cavity. The simple SMS interferometer is fabricated using the combination of two-mode step index fiber and single-mode fiber. With this proposed design, as many as eight stable laser lines are experimentally demonstrated. Moreover, when a tunable bandpass filter is inserted in the laser cavity, a dual-wavelength TDFF laser can be achieved in a 1.5-μm region. By heterodyning the dual-wavelength laser, simulation results suggest that the generated microwave signals can be tuned from 105.678 to 106.524 GHz with a constant step of �0.14 GHz. The presented photonics-based microwave generation method could provide alternative solution for 5G signal sources in 100-GHz region

    The Five Factor Model of personality and evaluation of drug consumption risk

    Full text link
    The problem of evaluating an individual's risk of drug consumption and misuse is highly important. An online survey methodology was employed to collect data including Big Five personality traits (NEO-FFI-R), impulsivity (BIS-11), sensation seeking (ImpSS), and demographic information. The data set contained information on the consumption of 18 central nervous system psychoactive drugs. Correlation analysis demonstrated the existence of groups of drugs with strongly correlated consumption patterns. Three correlation pleiades were identified, named by the central drug in the pleiade: ecstasy, heroin, and benzodiazepines pleiades. An exhaustive search was performed to select the most effective subset of input features and data mining methods to classify users and non-users for each drug and pleiad. A number of classification methods were employed (decision tree, random forest, kk-nearest neighbors, linear discriminant analysis, Gaussian mixture, probability density function estimation, logistic regression and na{\"i}ve Bayes) and the most effective classifier was selected for each drug. The quality of classification was surprisingly high with sensitivity and specificity (evaluated by leave-one-out cross-validation) being greater than 70\% for almost all classification tasks. The best results with sensitivity and specificity being greater than 75\% were achieved for cannabis, crack, ecstasy, legal highs, LSD, and volatile substance abuse (VSA).Comment: Significantly extended report with 67 pages, 27 tables, 21 figure

    Identifying Unique Neighborhood Characteristics to Guide Health Planning for Stroke and Heart Attack: Fuzzy Cluster and Discriminant Analyses Approaches

    Get PDF
    Socioeconomic, demographic, and geographic factors are known determinants of stroke and myocardial infarction (MI) risk. Clustering of these factors in neighborhoods needs to be taken into consideration during planning, prioritization and implementation of health programs intended to reduce disparities. Given the complex and multidimensional nature of these factors, multivariate methods are needed to identify neighborhood clusters of these determinants so as to better understand the unique neighborhood profiles. This information is critical for evidence-based health planning and service provision. Therefore, this study used a robust multivariate approach to classify neighborhoods and identify their socio-demographic characteristics so as to provide information for evidence-based neighborhood health planning for stroke and MI.The study was performed in East Tennessee Appalachia, an area with one of the highest stroke and MI risks in USA. Robust principal component analysis was performed on neighborhood (census tract) socioeconomic and demographic characteristics, obtained from the US Census, to reduce the dimensionality and influence of outliers in the data. Fuzzy cluster analysis was used to classify neighborhoods into Peer Neighborhoods (PNs) based on their socioeconomic and demographic characteristics. Nearest neighbor discriminant analysis and decision trees were used to validate PNs and determine the characteristics important for discrimination. Stroke and MI mortality risks were compared across PNs. Four distinct PNs were identified and their unique characteristics and potential health needs described. The highest risk of stroke and MI mortality tended to occur in less affluent PNs located in urban areas, while the suburban most affluent PNs had the lowest risk.Implementation of this multivariate strategy provides health planners useful information to better understand and effectively plan for the unique neighborhood health needs and is important in guiding resource allocation, service provision, and policy decisions to address neighborhood health disparities and improve population health

    3rd Workshop in Symbolic Data Analysis: book of abstracts

    Get PDF
    This workshop is the third regular meeting of researchers interested in Symbolic Data Analysis. The main aim of the event is to favor the meeting of people and the exchange of ideas from different fields - Mathematics, Statistics, Computer Science, Engineering, Economics, among others - that contribute to Symbolic Data Analysis

    Robust, fuzzy, and parsimonious clustering based on mixtures of Factor Analyzers

    Get PDF
    A clustering algorithm that combines the advantages of fuzzy clustering and robust statistical estimators is presented. It is based on mixtures of Factor Analyzers, endowed by the joint usage of trimming and the constrained estimation of scatter matrices, in a modified maximum likelihood approach. The algorithm generates a set of membership values, that are used to fuzzy partition the data set and to contribute to the robust estimates of the mixture parameters. The adoption of clusters modeled by Gaussian Factor Analysis allows for dimension reduction and for discovering local linear structures in the data. The new methodology has been shown to be resistant to different types of contamination, by applying it on artificial data. A brief discussion on the tuning parameters, such as the trimming level, the fuzzifier parameter, the number of clusters and the value of the scatter matrices constraint, has been developed, also with the help of some heuristic tools for their choice. Finally, a real data set has been analyzed, to show how intermediate membership values are estimated for observations lying at cluster overlap, while cluster cores are composed by observations that are assigned to a cluster in a crisp way.Ministerio de Economía y Competitividad grant MTM2017-86061-C2-1-P, y Consejería de Educación de la Junta de Castilla y León and FEDER grantVA005P17 y VA002G1
    corecore