1,108 research outputs found

    Understanding critical factors in gender recognition

    Get PDF
    Gender classification is a task of paramount importance in face recognition research, and it is potentially useful in a large set of applications. In this paper we investigate the gender classification problem by an extended empirical analysis on the Face Recognition Grand Challenge version 2.0 dataset (FRGC2.0). We propose challenging experimental protocols over the dimensions of FRGC2.0 – i.e., subject, face expression, race, controlled or uncontrolled environment. We evaluate our protocols with respect to several classification algorithms, and processing different types of features, like Gabor and LBP. Our results show that gender classification is independent from factors like the race of the subject, face expressions, and variations of controlled illumination conditions. We also report that Gabor features seem to be more robust than LBPs in the case of uncontrolled environment

    A review of content-based video retrieval techniques for person identification

    Get PDF
    The rise of technology spurs the advancement in the surveillance field. Many commercial spaces reduced the patrol guard in favor of Closed-Circuit Television (CCTV) installation and even some countries already used surveillance drone which has greater mobility. In recent years, the CCTV Footage have also been used for crime investigation by law enforcement such as in Boston Bombing 2013 incident. However, this led us into producing huge unmanageable footage collection, the common issue of Big Data era. While there is more information to identify a potential suspect, the massive size of data needed to go over manually is a very laborious task. Therefore, some researchers proposed using Content-Based Video Retrieval (CBVR) method to enable to query a specific feature of an object or a human. Due to the limitations like visibility and quality of video footage, only certain features are selected for recognition based on Chicago Police Department guidelines. This paper presents the comprehensive reviews on CBVR techniques used for clothing, gender and ethnic recognition of the person of interest and how can it be applied in crime investigation. From the findings, the three recognition types can be combined to create a Content-Based Video Retrieval system for person identification

    Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

    Full text link
    Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, and recognizes a probe face by component features. The segmentation is based on the landmarks located by a hierarchical algorithm that combines the Faster R-CNN for face detection and the Reduced Tree Structured Model for landmark localization. The core part of the CNN-based approach is a revised VGG network. We study the performances with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. We investigate the performances of the network when it is employed as a classifier or designed as a feature extractor. The two recognition approaches and the fast landmark localization are evaluated in extensive experiments, and compared to stateof-the-art methods to demonstrate their efficacy.Comment: 14 pages, 12 figures, 4 table

    A system for recognizing human emotions based on speech analysis and facial feature extraction: applications to Human-Robot Interaction

    Get PDF
    With the advance in Artificial Intelligence, humanoid robots start to interact with ordinary people based on the growing understanding of psychological processes. Accumulating evidences in Human Robot Interaction (HRI) suggest that researches are focusing on making an emotional communication between human and robot for creating a social perception, cognition, desired interaction and sensation. Furthermore, robots need to receive human emotion and optimize their behavior to help and interact with a human being in various environments. The most natural way to recognize basic emotions is extracting sets of features from human speech, facial expression and body gesture. A system for recognition of emotions based on speech analysis and facial features extraction can have interesting applications in Human-Robot Interaction. Thus, the Human-Robot Interaction ontology explains how the knowledge of these fundamental sciences is applied in physics (sound analyses), mathematics (face detection and perception), philosophy theory (behavior) and robotic science context. In this project, we carry out a study to recognize basic emotions (sadness, surprise, happiness, anger, fear and disgust). Also, we propose a methodology and a software program for classification of emotions based on speech analysis and facial features extraction. The speech analysis phase attempted to investigate the appropriateness of using acoustic (pitch value, pitch peak, pitch range, intensity and formant), phonetic (speech rate) properties of emotive speech with the freeware program PRAAT, and consists of generating and analyzing a graph of speech signals. The proposed architecture investigated the appropriateness of analyzing emotive speech with the minimal use of signal processing algorithms. 30 participants to the experiment had to repeat five sentences in English (with durations typically between 0.40 s and 2.5 s) in order to extract data relative to pitch (value, range and peak) and rising-falling intonation. Pitch alignments (peak, value and range) have been evaluated and the results have been compared with intensity and speech rate. The facial feature extraction phase uses the mathematical formulation (B\ue9zier curves) and the geometric analysis of the facial image, based on measurements of a set of Action Units (AUs) for classifying the emotion. The proposed technique consists of three steps: (i) detecting the facial region within the image, (ii) extracting and classifying the facial features, (iii) recognizing the emotion. Then, the new data have been merged with reference data in order to recognize the basic emotion. Finally, we combined the two proposed algorithms (speech analysis and facial expression), in order to design a hybrid technique for emotion recognition. Such technique have been implemented in a software program, which can be employed in Human-Robot Interaction. The efficiency of the methodology was evaluated by experimental tests on 30 individuals (15 female and 15 male, 20 to 48 years old) form different ethnic groups, namely: (i) Ten adult European, (ii) Ten Asian (Middle East) adult and (iii) Ten adult American. Eventually, the proposed technique made possible to recognize the basic emotion in most of the cases

    Quantification of cultural identity through artificial intelligence: a case study on the Waorani Amazonian ethnicity

    Get PDF
    The first step toward a Smart Village is that the community itself can benefit from the novel techniques that are applied. Some communities are far from being able to use the benefits that these technologies usually offer; however, they can benefit from the techniques that have led to the development of smart cities. This is the case of the indigenous people belonging to communities in the Amazon: They have seen their identity drastically eroded in recent decades as a result of the process of Western acculturation. In this context, the use of artificial intelligence techniques may contribute to the detection and quantification of cultural identity loss by identifying the most and least affected identity components of this process. This research work presents a quantitative method, which evaluates several variables of the cultural identity of an Ecuadorian Amazonian indigenous community: the Waorani. The proposed method automatically classifies the individuals and provides a subspace of it able to identify the weights of the subcomponents of this instrument in regard to its contribution to the Waorani identity. The systematic application of the instrument together with the artificial intelligence-based approach can provide decision makers with valuable information about which aspects of their identity are most sensitive to change and thus help design development policies that minimally interfere with their ethnic identity
    corecore