1,196 research outputs found

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    A data augmentation methodology for training machine/deep learning gait recognition algorithms

    Get PDF
    There are several confounding factors that can reduce the accuracy of gait recognition systems. These factors can reduce the distinctiveness, or alter the features used to characterise gait; they include variations in clothing, lighting, pose and environment, such as the walking surface. Full invariance to all confounding factors is challenging in the absence of high-quality labelled training data. We introduce a simulation-based methodology and a subject-specific dataset which can be used for generating synthetic video frames and sequences for data augmentation. With this methodology, we generated a multi-modal dataset. In addition, we supply simulation files that provide the ability to simultaneously sample from several confounding variables. The basis of the data is real motion capture data of subjects walking and running on a treadmill at different speeds. Results from gait recognition experiments suggest that information about the identity of subjects is retained within synthetically generated examples. The dataset and methodology allow studies into fully-invariant identity recognition spanning a far greater number of observation conditions than would otherwise be possible

    Human recognition based on gait poses

    Get PDF
    This paper introduces a new approach for gait analysis based on the Gait Energy Image (GEI). The main idea is to segment the gait cycle into some biomechanical poses, and to compute a particular GEI for eachpose. Pose-based GEIs can better represent body parts and dynamics descriptors with respect to the usually blurred depiction provided by a general GEI. Gait classification is carried out by fusing separatedpose-based decisions. Experiments on human identification prove the benefits of this new approach when compared to the original GEI method.Partially supported by projects CSD2007-00018 and CICYT TIN2009-14205-C04-04 from the Spanish Ministry of Innovation and Science, P1-1B2009-04 from Fundació Bancaixa and PREDOC/2008/04 grant from Universitat Jaume I. Portions of the research in this paper use the CASIA Gait Database collected by Institute of Automation, Chinese Academy of Science

    Robust arbitrary view gait recognition based on parametric 3D human body reconstruction and virtual posture synthesis

    Get PDF
    This paper proposes an arbitrary view gait recognition method where the gait recognition is performed in 3-dimensional (3D) to be robust to variation in speed, inclined plane and clothing, and in the presence of a carried item. 3D parametric gait models in a gait period are reconstructed by an optimized 3D human pose, shape and simulated clothes estimation method using multiview gait silhouettes. The gait estimation involves morphing a new subject with constant semantic constraints using silhouette cost function as observations. Using a clothes-independent 3D parametric gait model reconstruction method, gait models of different subjects with various postures in a cycle are obtained and used as galleries to construct 3D gait dictionary. Using a carrying-items posture synthesized model, virtual gait models with different carrying-items postures are synthesized to further construct an over-complete 3D gait dictionary. A self-occlusion optimized simultaneous sparse representation model is also introduced to achieve high robustness in limited gait frames. Experimental analyses on CASIA B dataset and CMU MoBo dataset show a significant performance gain in terms of accuracy and robustness

    HUMAN GENDER CLASSIFICATION USING KINECT SENSOR: A REVIEW

    Get PDF
    Human Gender Classification using Kinect sensor aims to classifying people’s gender based on their outward appearance. Application areas of Kinect sensor technology includes security, marketing, healthcare, and gaming. However, because of the changes in pose, attire, and illumination, gender determination with the Kinect sensor is not a trivial task. It is based on a variety of characteristics, including biological, social network, face, and body aspects. In recent years, gender classification that utilizes the Kinect sensor became a popular and essential way for accurate gender classification. A variety of methods and approaches, like machine learning, convolutional neural networks, sport vector machine (SVM), etc., have been used for gender classification using a Kinect sensor. This paper presents the state of the art for gender classification, with a focus on the features, databases, procedures, and algorithms used in it. A review of recent studies on this subject using the Kinect sensor and other technologies is provided, together with information on the variables that affect the classification\u27s accuracy. In addition, several publicly accessible databases or datasets are used by researchers to classify people by gender are covered. Finlay, this overview offers insightful information about the potential future avenues for research on Kinect-based human gender classification

    Expanding the Family of Grassmannian Kernels: An Embedding Perspective

    Full text link
    Modeling videos and image-sets as linear subspaces has proven beneficial for many visual recognition tasks. However, it also incurs challenges arising from the fact that linear subspaces do not obey Euclidean geometry, but lie on a special type of Riemannian manifolds known as Grassmannian. To leverage the techniques developed for Euclidean spaces (e.g, support vector machines) with subspaces, several recent studies have proposed to embed the Grassmannian into a Hilbert space by making use of a positive definite kernel. Unfortunately, only two Grassmannian kernels are known, none of which -as we will show- is universal, which limits their ability to approximate a target function arbitrarily well. Here, we introduce several positive definite Grassmannian kernels, including universal ones, and demonstrate their superiority over previously-known kernels in various tasks, such as classification, clustering, sparse coding and hashing

    Covariate factor mitigation techniques for robust gait recognition

    Get PDF
    The human gait is a discriminative feature capable of recognising a person by their unique walking manner. Currently gait recognition is based on videos captured in a controlled environment. These videos contain challenges, termed covariate factors, which affect the natural appearance and motion of gait, e.g. carrying a bag, clothing, shoe type and time. However gait recognition has yet to achieve robustness to these covariate factors. To achieve enhanced robustness capabilities, it is essential to address the existing gait recognition limitations. Specifically, this thesis develops an understanding of how covariate factors behave while a person is in motion and the impact covariate factors have on the natural appearance and motion of gait. Enhanced robustness is achieved by producing a combination of novel gait representations and novel covariate factor detection and removal procedures. Having addressed the limitations regarding covariate factors, this thesis achieves the goal of robust gait recognition. Using a skeleton representation of the human figure, the Skeleton Variance Image condenses a skeleton sequence into a single compact 2D gait representation to express the natural gait motion. In addition, a covariate factor detection and removal module is used to maximise the mitigation of covariate factor effects. By establishing the average pixel distribution within training (covariate factor free) representations, a comparison against test (covariate factor) representations achieves effective covariate factor detection. The corresponding difference can effectively remove covariate factors which occur at the boundary of, and hidden within, the human figure.The Engineering and Physical Sciences Research Council (EPSRC
    corecore