110 research outputs found

    A comparative study of the effectiveness of vibration and acoustic emission in diagnosing a defective bearing in a planetry gearbox

    Get PDF
    Whilst vibration analysis of planetary gearbox faults is relatively well established, the application of Acoustic Emission (AE) to this field is still in its infancy. For planetary-type gearboxes it is more challenging to diagnose bearing faults due to the dynamically changing transmission paths which contribute to masking the vibration signature of interest. The present study is aimed to reduce the effect of background noise whilst extracting the fault feature from AE and vibration signatures. This has been achieved through developing of internal AE sensor for helicopter transmission system. In addition, series of signal processing procedure has been developed to improved detection of incipient damage. Three signal processing techniques including an adaptive filter, spectral kurtosis and envelope analysis, were applied to AE and vibration data acquired from a simplified planetary gearbox test rig with a seeded bearing defect. The results show that AE identified the defect earlier than vibration analysis irrespective of the tortuous transmission pat

    Improved wind turbine monitoring using operational data

    Get PDF
    With wind energy becoming a major source of energy, there is a pressing need to reduce all associated costs to be competitive in a market that might be fully subsidy-free in the near future. Before thousands of wind turbines were installed all over the world, research in e.g. understanding aerodynamics, developing new materials, designing better gearboxes, improving power electronics etc., helped to cut down wind turbine manufacturing costs. It might be assumed, that this would be sufficient to reduce the costs of wind energy as the resource, the wind itself, is free of costs. However, it has become clear that the operation and maintenance of wind turbines contributes significantly to the overall cost of energy. Harsh environmental conditions and the frequently remote locations of the turbines makes maintenance of wind turbines challenging. Just recently, the industry realised that a move from reactive and scheduled maintenance towards preventative or condition-based maintenance will be crucial to further reduce costs. Knowing the condition of the wind turbine is key for any optimisation of operation and maintenance. There are various possibilities to install advanced sensors and monitoring systems developed in recent years. However, these will inevitably incur new costs that need to be worthwhile and retro-fits to existing turbines might not always be feasible. In contrast, this work focuses on ways to use operational data as recorded by the turbine's Supervisory Control And Data Acquisition (SCADA) system, which is installed in all modern wind turbines for operating purposes -- without additional costs. SCADA data usually contain information about the environmental conditions (e.g. wind speed, ambient temperature), the operation of the turbine (power production, rotational speed, pitch angle) and potentially the system's health status (temperatures, vibration). These measurements are commonly recorded in ten-minutely averages and might be seen as indirect and top-level information about the turbine's condition. Firstly, this thesis discusses the use of operational data to monitor the power performance to assess the overall efficiency of wind turbines and to analyse and optimise maintenance. In a sensitivity study, the financial consequences of imperfect maintenance are evaluated based on case study data and compared with environmental effects such as blade icing. It is shown how decision-making of wind farm operators could be supported with detailed `what-if' scenario analyses. Secondly, model-based monitoring of SCADA temperatures is investigated. This approach tries to identify hidden changes in the load-dependent fluctuations of drivetrain temperatures that can potentially reveal increased degradation and possible imminent failure. A detailed comparison of machine learning regression techniques and model configurations is conducted based on data from four wind farms with varying properties. The results indicate that the detailed setup of the model is very important while the selection of the modelling technique might be less relevant than expected. Ways to establish reliable failure detection are discussed and a condition index is developed based on an ensemble of different models and anomaly measures. However, the findings also highlight that better documentation of maintenance is required to further improve data-driven condition monitoring approaches. In the next part, the capabilities of operational data are explored in a study with data from both the SCADA system and a Condition Monitoring System (CMS) based on drivetrain vibrations. Analyses of signal similarity and data clusters reveal signal relationships and potential for synergistic effects of the different data sources. An application of machine learning techniques demonstrates that the alarms of the commercial CMS can be predicted in certain cases with SCADA data alone. Finally, the benefits of having wind turbines in farms are investigated in the context of condition monitoring. Several approaches are developed to improve failure detection based on operational statistics, CMS vibrations or SCADA temperatures. It is demonstrated that utilising comparisons with neighbouring turbines might be beneficial to get earlier and more reliable warnings of imminent failures. This work has been part of the Advanced Wind Energy Systems Operation and Maintenance Expertise (AWESOME) project, a European consortium with companies, universities and research centres in the wind energy sector from Spain, Italy, Germany, Denmark, Norway and UK. Parts of this work were developed in collaboration with other fellows in the project (as marked and explained in footnotes)

    Bearing signal separation enhancement with application to helicopter transmission system

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Bearing vibration signal separation is essential for fault detection of gearboxes, especially where the vibration is nonstationary, susceptible to background noise, and subjected to an arduous transmission path from the source to the receiver. This paper presents a methodology for improving fault detection via a series of vibration signal processing techniques, including signal separation, synchronous averaging (SA), spectral kurtosis (SK), and envelope analysis. These techniques have been tested on experimentally obtained vibration data acquired from the transmission system of a CS-29 Category A helicopter gearbox operating under different bearing damage conditions. Results showed successful enhancement of bearing fault detection on the second planetary stage of the gearbo

    Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    Full text link

    EEMD-Based cICA method for single-channel signal separation and fault feature extraction of gearbox

    Get PDF
    This paper proposes a novel fault feature extraction method with the aim of extracting the fault feature submerged in the single-channel observation signal. The proposed method integrates the strengths of the constrained independent component analysis (cICA) extracting only the signals of interest (SOIs) with the advantage of ensemble empirical mode decomposition (EEMD) alleviating the mode mixing. The method, which is named EEMD-based cICA, not only enables gear fault feature extraction but also offers a new independent component analysis (ICA) mixing model with source noise and measured noise for the single-channel observation signal. The efficiency of the proposed method is tested on simulated as well as real-world vibration signals acquired from a multi-stage gearbox with a missing tooth and a chipped tooth, respectively
    corecore