549 research outputs found

    Gaze interaction for multi-display systems using natural light eye-tracker

    Get PDF

    Non-Verbal Feedback on User Interest Based on Gaze Direction and Head Pose

    Get PDF

    GAZE ESTIMATION USING SCLERA AND IRIS EXTRACTION

    Get PDF
    Tracking gaze of an individual provides important information in understanding the behavior of that person. Gaze tracking has been widely used in a variety of applications from tracking consumers gaze fixation on advertisements, controlling human-computer devices, to understanding behaviors of patients with various types of visual and/or neurological disorders such as autism. Gaze pattern can be identified using different methods but most of them require the use of specialized equipments which can be prohibitively expensive for some applications. In this dissertation, we investigate the possibility of using sclera and iris regions captured in a webcam sequence to estimate gaze pattern. The sclera and iris regions in the video frame are first extracted by using an adaptive thresholding technique. The gaze pattern is then determined based on areas of different sclera and iris regions and distances between tracked points along the irises. The technique is novel as sclera regions are often ignored in eye tracking literature while we have demonstrated that they can be easily extracted from images captured by low-cost camera and are useful in determining the gaze pattern. The accuracy and computational efficiency of the proposed technique is demonstrated by experiments with human subjects

    Gaze interaction for multi-display systems using natural light eye-tracker

    Get PDF

    The eyes have it : The response of European Herring Gulls Larus argentatus to human eye-gaze

    Get PDF
    Acknowledgements We thank Harper Eagles for providing numerous useful comments and suggestions on an earlier draft, and two reviewers who made constructive comments. We have no conflicts of interest.Peer reviewedPublisher PD

    Motion tracking of iris features to detect small eye movements

    Get PDF
    The inability of current video-based eye trackers to reliably detect very small eye movements has led to confusion about the prevalence or even the existence of monocular microsaccades (small, rapid eye movements that occur in only one eye at a time). As current methods often rely on precisely localizing the pupil and/or corneal reflection on successive frames, current microsaccade-detection algorithms often suffer from signal artifacts and a low signal-to-noise ratio. We describe a new video-based eye tracking methodology which can reliably detect small eye movements over 0.2 degrees (12 arcmin) with very high confidence. Our method tracks the motion of iris features to estimate velocity rather than position, yielding a better record of microsaccades. We provide a more robust, detailed record of miniature eye movements by relying on more stable, higher-order features (such as local features of iris texture) instead of lower-order features (such as pupil center and corneal reflection), which are sensitive to noise and drift

    EYE AND GAZE TRACKING ALGORITHM FOR COLLABORATIVE LEARNING SYSTEM

    Get PDF
    International audienceOur work focuses on the interdisciplinary field of detailed analysis of behaviors exhibited by individuals during sessions of distributed collaboration. With a particular focus on ergonomics, we propose new mechanisms to be integrated into existing tools to enable increased productivity in distributed learning and working. Our technique is to record ocular movements (eye tracking) to analyze various scenarios of distributed collaboration in the context of computer-based training. In this article, we present a low-cost oculometric device that is capable of making ocular measurements without interfering with the natural behavior of the subject. We expect that this device could be employed anywhere that a natural, non-intrusive method of observation is required, and its low-cost permits it to be readily integrated into existing popular tools, particularly E-learning campus

    A Bayesian hierarchy for robust gaze estimation in human–robot interaction

    Get PDF
    In this text, we present a probabilistic solution for robust gaze estimation in the context of human–robot interaction. Gaze estimation, in the sense of continuously assessing gaze direction of an interlocutor so as to determine his/her focus of visual attention, is important in several important computer vision applications, such as the development of non-intrusive gaze-tracking equipment for psychophysical experiments in neuroscience, specialised telecommunication devices, video surveillance, human–computer interfaces (HCI) and artificial cognitive systems for human–robot interaction (HRI), our application of interest. We have developed a robust solution based on a probabilistic approach that inherently deals with the uncertainty of sensor models, but also and in particular with uncertainty arising from distance, incomplete data and scene dynamics. This solution comprises a hierarchical formulation in the form of a mixture model that loosely follows how geometrical cues provided by facial features are believed to be used by the human perceptual system for gaze estimation. A quantitative analysis of the proposed framework's performance was undertaken through a thorough set of experimental sessions. Results show that the framework performs according to the difficult requirements of HRI applications, namely by exhibiting correctness, robustness and adaptiveness

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe
    • …
    corecore