545 research outputs found

    Gaze Embeddings for Zero-Shot Image Classification

    Get PDF
    Zero-shot image classification using auxiliary information, such as attributes describing discriminative object properties, requires time-consuming annotation by domain experts. We instead propose a method that relies on human gaze as auxiliary information, exploiting that even non-expert users have a natural ability to judge class membership. We present a data collection paradigm that involves a discrimination task to increase the information content obtained from gaze data. Our method extracts discriminative descriptors from the data and learns a compatibility function between image and gaze using three novel gaze embeddings: Gaze Histograms (GH), Gaze Features with Grid (GFG) and Gaze Features with Sequence (GFS). We introduce two new gaze-annotated datasets for fine-grained image classification and show that human gaze data is indeed class discriminative, provides a competitive alternative to expert-annotated attributes, and outperforms other baselines for zero-shot image classification

    Gaze Embeddings for Zero-Shot Image Classification

    Get PDF

    Zero-Shot Learning -- A Comprehensive Evaluation of the Good, the Bad and the Ugly

    Full text link
    Due to the importance of zero-shot learning, i.e. classifying images where there is a lack of labeled training data, the number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark, we first define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets used for this task. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g. pre-training on zero-shot test classes. Moreover, we propose a new zero-shot learning dataset, the Animals with Attributes 2 (AWA2) dataset which we make publicly available both in terms of image features and the images themselves. Second, we compare and analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic generalized zero-shot setting. Finally, we discuss in detail the limitations of the current status of the area which can be taken as a basis for advancing it.Comment: Accepted by TPAMI in July, 2018. We introduce Proposed Split Version 2.0 (Please download it from our project webpage). arXiv admin note: substantial text overlap with arXiv:1703.0439

    GAN you train your network

    Get PDF
    2022 Summer.Includes bibliographical references.Zero-shot classifiers identify unseen classes — classes not seen during training. Specifically, zero-shot models classify attribute information associated with classes (e.g., a zebra has stripes but a lion does not). Lately, the usage of generative adversarial networks (GAN) for zero-shot learning has significantly improved the recognition accuracy of unseen classes by producing visual features on any class. Here, I investigate how similar visual features obtained from images of a class are to the visual features generated by a GAN. I find that, regardless of metric, both sets of visual features are disjointed. I also fine-tune a ResNet so that it produces visual features that are similar to the visual features generated by a GAN — this is novel because all standard approaches do the opposite: they train the GAN to match the output of the model. I conclude that these experiments emphasize the need to establish a standard input pipeline in zero-shot learning because of the mismatch of generated and real features, as well as the variation in features (and subsequent GAN performance) from different implementations of models such as ResNet-101

    Doodle to Search: Practical Zero-Shot Sketch-based Image Retrieval

    Get PDF
    In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future researchComment: Oral paper in CVPR 201
    • …
    corecore