1,633 research outputs found

    Gaussian-process-based demand forecasting for predictive control of drinking water networks

    Get PDF
    Trabajo presentado a la 9th International Conference on Critical Information Infrastructures Security, celebrada en Limassol (Chipre) del 13 al 15 de octubre de 2014.This paper focuses on short-term water demand forecasting for predictive control of DrinkingWater Networks (DWN) by using Gaussian Process (GP). For the predictive control strategy, system state prediction in a nite horizon are generated by a DWN model and demands are regarded as system disturbances. The goal is to provide a demand estimation within a given condence interval. For the sake of obtaining a desired forecasting performance, the forecasting process is carried out in two parts: the expected part is forecasted by Double-Seasonal Holt-Winters (DSHW) method and the stochastic part is forecasted by GP method. The mean value of water demand is rstly estimated by DSHW while GP provides estimations within a condence interval. GP is applied with random inputs to propagate uncertainty at each step. Results of the application of the proposed approach to a real case study based on the Barcelona DWN have shown that the general goal has been successfully reached.This work is partially supported by the research projects SHERECS DPI-2011-26243 and ECOCIS DPI-2013-48243-C2-1-R, both of the Spanish Ministry of Education, by EFFINET grant FP7-ICT-2012-318556 of the European Commission and by AGAUR Doctorat Industrial 2013-DI-041. Ye Wang also thanks China Scholarship Council for providing postgraduate scholarship.Peer Reviewe

    Gaussian-process-based demand forecasting for predictive control of drinking water networks

    Get PDF
    This paper focuses on water demand forecasting for predictive control of Drinking Water Networks (DWN) in the short term by using Gaussian Process (GP). For the predictive control strategy, system states in a finite horizon are generated by a DWN model and demands are regarded as system disturbances. The goal is to provide a demand estimation within a given confidence interval. For the sake of obtaining a desired forecasting performance, the forecasting process is carried out in two parts: the expected part is forecasted by Double-Seasonal Holt-Winters (DSHW) method and the stochastic part is forecasted by GP method. The mean value of water demand is firstly estimated by DSHW while GP provides estimations within a confidence interval. GP is applied with random inputs to propagate uncertainty at each step. Results of the application of the proposed approach to a real case study based on the Barcelona DWN have shown that the general goal has been successfully reached.Peer ReviewedPostprint (author’s final draft

    Economic MPC with periodic terminal constraints of nonlinear differential-algebraic-equation systems: Application to drinking water networks

    Get PDF
    © 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this paper, an Economic Model Predictive Control (EMPC) strategy with periodic terminal constraints is addressed for nonlinear differential-algebraic-equation systems with an application to Drinking Water Networks (DWNs). DWNs have some periodic behaviours because of the daily seasonality of water demands and electrical energy price. The periodic terminal constraint and economic terminal cost are implemented in the EMPC controller design for the purpose of achieving convergence. The feasibility of the proposed EMPC strategy when disturbances are considered is guaranteed by means of soft constraints implemented by using slack variables. Finally, the comparison results in a case study of the D-Town water network is provided by applying the EMPC strategy with or without periodic terminal constraints.Accepted versio

    GPU-accelerated stochastic predictive control of drinking water networks

    Get PDF
    Despite the proven advantages of scenario-based stochastic model predictive control for the operational control of water networks, its applicability is limited by its considerable computational footprint. In this paper we fully exploit the structure of these problems and solve them using a proximal gradient algorithm parallelizing the involved operations. The proposed methodology is applied and validated on a case study: the water network of the city of Barcelona.Comment: 11 pages in double column, 7 figure

    Reliability-based economic model predictive control for generalized flow-based networks including actuators' health-aware capabilities

    Get PDF
    This paper proposes a reliability-based economic model predictive control (MPC) strategy for the management of generalized flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamically allocate safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the considered case study.Peer ReviewedPostprint (author's final draft

    Chance-constrained model predictive control for drinking water networks

    Get PDF
    This paper addresses a chance-constrained model predictive control (CC-MPC) strategy for the management of drinking water networks (DWNs) based on a finite horizon stochastic optimisation problem with joint probabilistic (chance) constraints. In this approach, water demands are considered additive stochastic disturbances with non-stationary uncertainty description, unbounded support and known (or approximated) quasi-concave probabilistic distribution. A deterministic equivalent of the stochastic problem is formulated using Boole's inequality to decompose joint chance constraints into single chance constraints and by considering a uniform allocation of risk to bound these later constraints. The resultant deterministic-equivalent optimisation problem is suitable to be solved with tractable quadratic programming (QP) or second order cone programming (SOCP) algorithms. The reformulation allows to explicitly and easily propagate uncertainty over the prediction horizon, and leads to a cost-efficient management of risk that consists in a dynamic back-off to avoid frequent violation of constraints. Results of applying the proposed approach to a real case study - the Barcelona DWN (Spain) - have shown that the network performance (in terms of operational costs) and the necessary back-off (to cope with stochastic disturbances) are optimised simultaneously within a single problem, keeping tractability of the solution, even in large-scale networks. The general formulation of the approach and the automatic computation of proper back-off within the MPC framework replace the need of experience-based heuristics or bi-level optimisation schemes that might compromise the trade-off between profits, reliability and computational burden.This work has been partially supported by the EU Project EFFINET (FP7-ICT-2011-8-31855) and the DGR of Generalitat de Catalunya (SAC group Ref. 2009/SGR/1491).Peer Reviewe

    Forecasting of commercial sales with large scale Gaussian Processes

    Full text link
    This paper argues that there has not been enough discussion in the field of applications of Gaussian Process for the fast moving consumer goods industry. Yet, this technique can be important as it e.g., can provide automatic feature relevance determination and the posterior mean can unlock insights on the data. Significant challenges are the large size and high dimensionality of commercial data at a point of sale. The study reviews approaches in the Gaussian Processes modeling for large data sets, evaluates their performance on commercial sales and shows value of this type of models as a decision-making tool for management.Comment: 1o pages, 5 figure

    Water demand forecasting for the optimal operation of large-scale drinking water networks: the Barcelona case study

    Get PDF
    Drinking Water Networks (DWN) are large-scale multiple-input multiple-output systems with uncertain disturbances (such as the water demand from the consumers) and involve components of linear, non-linear and switching nature. Operating, safety and quality constraints deem it important for the state and the input of such systems to be constrained into a given domain. Moreover, DWNs' operation is driven by time-varying demands and involves an considerable consumption of electric energy and the exploitation of limited water resources. Hence, the management of these networks must be carried out optimally with respect to the use of available resources and infrastructure, whilst satisfying high service levels for the drinking water supply. To accomplish this task, this paper explores various methods for demand forecasting, such as Seasonal ARIMA, BATS and Support Vector Machine, and presents a set of statistically validated time series models. These models, integrated with a Model Predictive Control (MPC) strategy addressed in this paper, allow to account for an accurate on-line forecasting and flow management of a DWN
    • …
    corecore