609 research outputs found

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    Learning to Assist Different Wearers in Multitasks: Efficient and Individualized Human-In-the-Loop Adaption Framework for Exoskeleton Robots

    Full text link
    One of the typical purposes of using lower-limb exoskeleton robots is to provide assistance to the wearer by supporting their weight and augmenting their physical capabilities according to a given task and human motion intentions. The generalizability of robots across different wearers in multiple tasks is important to ensure that the robot can provide correct and effective assistance in actual implementation. However, most lower-limb exoskeleton robots exhibit only limited generalizability. Therefore, this paper proposes a human-in-the-loop learning and adaptation framework for exoskeleton robots to improve their performance in various tasks and for different wearers. To suit different wearers, an individualized walking trajectory is generated online using dynamic movement primitives and Bayes optimization. To accommodate various tasks, a task translator is constructed using a neural network to generalize a trajectory to more complex scenarios. These generalization techniques are integrated into a unified variable impedance model, which regulates the exoskeleton to provide assistance while ensuring safety. In addition, an anomaly detection network is developed to quantitatively evaluate the wearer's comfort, which is considered in the trajectory learning procedure and contributes to the relaxation of conflicts in impedance control. The proposed framework is easy to implement, because it requires proprioceptive sensors only to perform and deploy data-efficient learning schemes. This makes the exoskeleton practical for deployment in complex scenarios, accommodating different walking patterns, habits, tasks, and conflicts. Experiments and comparative studies on a lower-limb exoskeleton robot are performed to demonstrate the effectiveness of the proposed framework.Comment: 16 pages journal articl

    Acquisition and distribution of synergistic reactive control skills

    Get PDF
    Learning from demonstration is an afficient way to attain a new skill. In the context of autonomous robots, using a demonstration to teach a robot accelerates the robot learning process significantly. It helps to identify feasible solutions as starting points for future exploration or to avoid actions that lead to failure. But the acquisition of pertinent observationa is predicated on first segmenting the data into meaningful sequences. These segments form the basis for learning models capable of recognising future actions and reconstructing the motion to control a robot. Furthermore, learning algorithms for generative models are generally not tuned to produce stable trajectories and suffer from parameter redundancy for high degree of freedom robots This thesis addresses these issues by firstly investigating algorithms, based on dynamic programming and mixture models, for segmentation sensitivity and recognition accuracy on human motion capture data sets of repetitive and categorical motion classes. A stability analysis of the non-linear dynamical systems derived from the resultant mixture model representations aims to ensure that any trajectories converge to the intended target motion as observed in the demonstrations. Finally, these concepts are extended to humanoid robots by deploying a factor analyser for each mixture model component and coordinating the structure into a low dimensional representation of the demonstrated trajectories. This representation can be constructed as a correspondence map is learned between the demonstrator and robot for joint space actions. Applying these algorithms for demonstrating movement skills to robot is a further step towards autonomous incremental robot learning

    Multi-Joint Leg Moment Estimation During Walking Using Thigh or Shank Angles

    Get PDF

    Real-Time Human Pose Estimation on a Smart Walker using Convolutional Neural Networks

    Full text link
    Rehabilitation is important to improve quality of life for mobility-impaired patients. Smart walkers are a commonly used solution that should embed automatic and objective tools for data-driven human-in-the-loop control and monitoring. However, present solutions focus on extracting few specific metrics from dedicated sensors with no unified full-body approach. We investigate a general, real-time, full-body pose estimation framework based on two RGB+D camera streams with non-overlapping views mounted on a smart walker equipment used in rehabilitation. Human keypoint estimation is performed using a two-stage neural network framework. The 2D-Stage implements a detection module that locates body keypoints in the 2D image frames. The 3D-Stage implements a regression module that lifts and relates the detected keypoints in both cameras to the 3D space relative to the walker. Model predictions are low-pass filtered to improve temporal consistency. A custom acquisition method was used to obtain a dataset, with 14 healthy subjects, used for training and evaluating the proposed framework offline, which was then deployed on the real walker equipment. An overall keypoint detection error of 3.73 pixels for the 2D-Stage and 44.05mm for the 3D-Stage were reported, with an inference time of 26.6ms when deployed on the constrained hardware of the walker. We present a novel approach to patient monitoring and data-driven human-in-the-loop control in the context of smart walkers. It is able to extract a complete and compact body representation in real-time and from inexpensive sensors, serving as a common base for downstream metrics extraction solutions, and Human-Robot interaction applications. Despite promising results, more data should be collected on users with impairments, to assess its performance as a rehabilitation tool in real-world scenarios.Comment: Accepted for publication in Expert Systems with Application

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable, Hands-Free Dynamic Walking

    Get PDF
    "I will never forget the emotion of my first steps […]," were the words of Fran?oise, the first user during initial trials of the exoskeleton ATALANTE [1]. "I am tall again!" were the words of Sandy (the fourth user) after standing up in the exoskeleton. During these early tests, complete paraplegic patients dynamically walked up to 10 m without crutches or other assistance using a feedback control method originally invented for bipedal robots. As discussed in "Summary," this article describes the hardware (shown in Figure 1) that was designed to achieve hands-free dynamic walking, the control laws that were deployed (and those being developed) to provide enhanced mobility and robustness, and preliminary test results. In this article, dynamic walking refers to a motion that is orbitally stable as opposed to statically stable
    • …
    corecore