231 research outputs found

    A Box Particle Filter for Stochastic and Set-theoretic Measurements with Association Uncertainty

    Get PDF
    This work develops a novel estimation approach for nonlinear dynamic stochastic systems by combining the sequential Monte Carlo method with interval analysis. Unlike the common pointwise measurements, the proposed solution is for problems with interval measurements with association uncertainty. The optimal theoretical solution can be formulated in the framework of random set theory as the Bernoulli filter for interval measurements. The straightforward particle filter implementation of the Bernoulli filter typically requires a huge number of particles since the posterior probability density function occupies a significant portion of the state space. In order to reduce the number of particles, without necessarily sacrificing estimation accuracy, the paper investigates an implementation based on box particles. A box particle occupies a small and controllable rectangular region of non-zero volume in the target state space. The numerical results demonstrate that the filter performs remarkably well: both target state and target presence are estimated reliably using a very small number of box particles

    State space reparametrization for approximating nonlinear models in Bayesian state estimation

    Get PDF
    Recursive Bayesian state estimation is a powerful methodology which is useful for the integration of data about a process of interest while considering all the sources of uncertainty which are present in the observations and in modeling inaccuracies. However, in its general form it is intractable and approximations need to be made in order to use it in real life applications. The most widely used algorithm to perform recursive state estimation is the Kalman filter, which assumes that the probability distributions that it propagates are Gaussian and that the measurement and dynamical processes are linear. If these assumptions are satisfied, the Kalman filter is optimal. In most applications, however, this proves to be an oversimplification, due to which several techniques have arisen to handle model non-linearity and different types of distributions. In this thesis, a novel method for the estimation of distributions with nonlinear dynamical and measurement models is presented, which uses a reparametrization of the state space of the distributions in order to exploit the linear properties of the Kalman filter. This involves the mapping of the distribution into a different space, and a subsequent approximation as a Gaussian distribution. An analysis of the adequacy of this transformation is presented, which shows that it is a valid approach in a number of practically interesting filtering problems. The proposed approach is applied to the estimation of the state of Earth-orbiting objects, as it is a challenging estimation scenario which can benefit from the use of filter. Space situational awareness is increasingly important as near-Earth space becomes cluttered with satellites and debris. In this work, the sensors that are most commonly used to track objects in orbit, radars and telescopes, are modeled and a filter based on the previously discussed ideas is proposed. Finally, a multi-object estimation filter based on a recent estimation framework is presented which propagates high amounts of information while maintaining low computational complexity. This is important as there are many challenges to tracking large amounts of orbiting objects in a principled way using ground-based sensors, and naturally extends the single object filter described above to the multi-sensor, multi-object case

    Bayesian estimation and reconstruction of marine surface contaminant dispersion

    Full text link
    Discharge of hazardous substances into the marine environment poses a substantial risk to both public health and the ecosystem. In such incidents, it is imperative to accurately estimate the release strength of the source and reconstruct the spatio-temporal dispersion of the substances based on the collected measurements. In this study, we propose an integrated estimation framework to tackle this challenge, which can be used in conjunction with a sensor network or a mobile sensor for environment monitoring. We employ the fundamental convection-diffusion partial differential equation (PDE) to represent the general dispersion of a physical quantity in a non-uniform flow field. The PDE model is spatially discretised into a linear state-space model using the dynamic transient finite-element method (FEM) so that the characterisation of time-varying dispersion can be cast into the problem of inferring the model states from sensor measurements. We also consider imperfect sensing phenomena, including miss-detection and signal quantisation, which are frequently encountered when using a sensor network. This complicated sensor process introduces nonlinearity into the Bayesian estimation process. A Rao-Blackwellised particle filter (RBPF) is designed to provide an effective solution by exploiting the linear structure of the state-space model, whereas the nonlinearity of the measurement model can be handled by Monte Carlo approximation with particles. The proposed framework is validated using a simulated oil spill incident in the Baltic sea with real ocean flow data. The results show the efficacy of the developed spatio-temporal dispersion model and estimation schemes in the presence of imperfect measurements. Moreover, the parameter selection process is discussed, along with some comparison studies to illustrate the advantages of the proposed algorithm over existing methods

    Continuous Measurement and Stochastic Methods in Quantum Optical Systems

    Get PDF
    This dissertation studies the statistics and modeling of a quantum system probed by a coherent laser field. We focus on an ensemble of qubits dispersively coupled to a traveling wave light field. The first research topic explores the quantum measurement statistics of a quasi-monochromatic laser probe. We identify the shortest timescale that successive measurements approximately commute. Our model predicts that for a probe in the near infrared, noncommuting measurement effects are apparent for subpicosecond times. The second dissertation topic attempts to find an approximation to a conditional master equation, which maps identical product states to identical product states. Through a technique known as projection filtering, we find such a equation for an ensemble of qubits experiencing a diffusive measurement of a collective angular momentum projection, and global rotations. We then test the quality of the approximation through numerical simulations. In the presence of strong randomized rotations, the approximation reproduces the exact expectation values to within 95%. The final topic applies the projection filter to the problem of state reconstruction. We find an initial state estimate based on a single continuous measurement of an identically prepared atomic ensemble. Given the ability to make a continuous collective measurement and simultaneously applying time varying controls, it is possible to find an accurate estimate given based upon a single measurement realization. Here we explore the fundamental limits of this protocol by studying an idealized model for pure qubits, which is limited only by measurement backaction. Using the exact dynamics to produce simulated measurements, we then numerically search for a maximum likelihood estimate based on the approximate expression. Our estimation technique nearly achieves an average fidelity bound set by an optimum POVM.Comment: PhD Dissertatio

    Distributed Kalman Filters over Wireless Sensor Networks: Data Fusion, Consensus, and Time-Varying Topologies

    Get PDF
    Kalman filtering is a widely used recursive algorithm for optimal state estimation of linear stochastic dynamic systems. The recent advances of wireless sensor networks (WSNs) provide the technology to monitor and control physical processes with a high degree of temporal and spatial granularity. Several important problems concerning Kalman filtering over WSNs are addressed in this dissertation. First we study data fusion Kalman filtering for discrete-time linear time-invariant (LTI) systems over WSNs, assuming the existence of a data fusion center that receives observations from distributed sensor nodes and estimates the state of the target system in the presence of data packet drops. We focus on the single sensor node case and show that the critical data arrival rate of the Bernoulli channel can be computed by solving a simple linear matrix inequality problem. Then a more general scenario is considered where multiple sensor nodes are employed. We derive the stationary Kalman filter that minimizes the average error variance under a TCP-like protocol. The stability margin is adopted to tackle the stability issue. Second we study distributed Kalman filtering for LTI systems over WSNs, where each sensor node is required to locally estimate the state in a collaborative manner with its neighbors in the presence of data packet drops. The stationary distributed Kalman filter (DKF) that minimizes the local average error variance is derived. Building on the stationary DKF, we propose Kalman consensus filter for the consensus of different local estimates. The upper bound for the consensus coefficient is computed to ensure the mean square stability of the error dynamics. Finally we focus on time-varying topology. The solution to state consensus control for discrete-time homogeneous multi-agent systems over deterministic time-varying feedback topology is provided, generalizing the existing results. Then we study distributed state estimation over WSNs with time-varying communication topology. Under the uniform observability, each sensor node can closely track the dynamic state by using only its own observation, plus information exchanged with its neighbors, and carrying out local computation

    Some New Results in Distributed Tracking and Optimization

    Get PDF
    The current age of Big Data is built on the foundation of distributed systems, and efficient distributed algorithms to run on these systems.With the rapid increase in the volume of the data being fed into these systems, storing and processing all this data at a central location becomes infeasible. Such a central \textit{server} requires a gigantic amount of computational and storage resources. Even when it is possible to have central servers, it is not always desirable, due to privacy concerns. Also, sending huge amounts of data to such servers incur often infeasible bandwidth requirements. In this dissertation, we consider two kinds of distributed architectures: 1) star-shaped topology, where multiple worker nodes are connected to, and communicate with a server, but the workers do not communicate with each other; and 2) mesh topology or network of interconnected workers, where each worker can communicate with a small number of neighboring workers. In the first half of this dissertation (Chapters 2 and 3), we consider distributed systems with mesh topology.We study two different problems in this context. First, we study the problem of simultaneous localization and multi-target tracking. Multiple mobile agents localize themselves cooperatively, while also tracking multiple, unknown number of mobile targets, in the presence of measurement-origin uncertainty. In situations with limited GPS signal availability, agents (like self-driving cars in urban canyons, or autonomous vehicles in hazardous environments) need to rely on inter-agent measurements for localization. The agents perform the additional task of tracking multiple targets (pedestrians and road-signs for self-driving cars). We propose a decentralized algorithm for this problem. To be effective in real-time applications, we propose efficient Gaussian and Gaussian-mixture based filters, rather than the computationally expensive particle-based methods in the existing literature. Our novel factor-graph based approach gives better performance, in terms of both agent localization errors, and target-location and cardinality errors. Next, we study an online convex optimization problem, where a network of agents cooperate to minimize a global time-varying objective function. Only the local functions are revealed to individual agents. The agents also need to satisfy their individual constraints. We propose a primal-dual update based decentralized algorithm for this problem. Under standard assumptions, we prove that the proposed algorithm achieves sublinear regret and constraint violation across the network. In other words, over a long enough time horizon, the decisions taken by the agents are, on average, as good as if all the information was revealed ahead of time. In addition, the individual constraint violations of the agents, averaged over time, are zero. In the next part of the dissertation (Chapters 4), we study distributed systems with a star-shaped topology. The problem we study is distributed nonconvex optimization. With the recent success of deep learning, coupled with the use of distributed systems to solve large-scale problems, this problem has gained prominence over the past decade. The recently proposed paradigm of Federated Learning (which has already been deployed by Google/Apple in Android/iOS phones) has further catalyzed research in this direction. The problem we consider is minimizing the average of local smooth, nonconvex functions. Each node has access only to its own loss function, but can communicate with the server, which aggregates updates from all the nodes, before distributing them to all the nodes. With the advent of more and more complex neural network architectures, these updates can be high dimensional. To save resources, the problem needs to be solved via communication-efficient approaches. We propose a novel algorithm, which combines the idea of variance-reduction, with the paradigm of carrying out multiple local updates at each node before averaging. We prove the convergence of the approach to a first-order stationary point. Our algorithm is optimal in terms of computation, and state-of-the-art in terms of the communication requirements. Lastly in Chapter 5, we consider the situation when the nodes do not have access to function gradients, and need to minimize the loss function using only function values. This problem lies in the domain of zeroth-order optimization. For simplicity of analysis, we study this problem only in the single-node case. This problem finds application in simulation-based optimization, and adversarial example generation for attacking deep neural networks. We propose a novel function value based gradient estimator, which has better variance, and better query-efficiency compared to existing estimators. The proposed estimator covers the most commonly used existing estimators as special cases. We conduct a comprehensive convergence analysis under different conditions. We also demonstrate its effectiveness through a real-world application to generating adversarial examples from a black-box deep neural network

    When Decision Meets Estimation: Theory and Applications

    Get PDF
    In many practical problems, both decision and estimation are involved. This dissertation intends to study the relationship between decision and estimation in these problems, so that more accurate inference methods can be developed. Hybrid estimation is an important formulation that deals with state estimation and model structure identification simultaneously. Multiple-model (MM) methods are the most widelyused tool for hybrid estimation. A novel approach to predict the Internet end-to-end delay using MM methods is proposed. Based on preliminary analysis of the collected end-to-end delay data, we propose an off-line model set design procedure using vector quantization (VQ) and short-term time series analysis so that MM methods can be applied to predict on-line measurement data. Experimental results show that the proposed MM predictor outperforms two widely used adaptive filters in terms of prediction accuracy and robustness. Although hybrid estimation can identify model structure, it mainly focuses on the estimation part. When decision and estimation are of (nearly) equal importance, a joint solution is preferred. By noticing the resemblance, a new Bayes risk is generalized from those of decision and estimation, respectively. Based on this generalized Bayes risk, a novel, integrated solution to decision and estimation is introduced. Our study tries to give a more systematic view on the joint decision and estimation (JDE) problem, which we believe the work in various fields, such as target tracking, communications, time series modeling, will benefit greatly from. We apply this integrated Bayes solution to joint target tracking and classification, a very important topic in target inference, with simplified measurement models. The results of this new approach are compared with two conventional strategies. At last, a surveillance testbed is being built for such purposes as algorithm development and performance evaluation. We try to use the testbed to bridge the gap between theory and practice. In the dissertation, an overview as well as the architecture of the testbed is given and one case study is presented. The testbed is capable to serve the tasks with decision and/or estimation aspects, and is helpful for the development of the JDE algorithms
    corecore