21,785 research outputs found

    A Unifying review of linear gaussian models

    Get PDF
    Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model.We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models

    Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression

    Full text link
    In this paper, we revisit batch state estimation through the lens of Gaussian process (GP) regression. We consider continuous-discrete estimation problems wherein a trajectory is viewed as a one-dimensional GP, with time as the independent variable. Our continuous-time prior can be defined by any nonlinear, time-varying stochastic differential equation driven by white noise; this allows the possibility of smoothing our trajectory estimates using a variety of vehicle dynamics models (e.g., `constant-velocity'). We show that this class of prior results in an inverse kernel matrix (i.e., covariance matrix between all pairs of measurement times) that is exactly sparse (block-tridiagonal) and that this can be exploited to carry out GP regression (and interpolation) very efficiently. When the prior is based on a linear, time-varying stochastic differential equation and the measurement model is also linear, this GP approach is equivalent to classical, discrete-time smoothing (at the measurement times); when a nonlinearity is present, we iterate over the whole trajectory to maximize accuracy. We test the approach experimentally on a simultaneous trajectory estimation and mapping problem using a mobile robot dataset.Comment: Submitted to Autonomous Robots on 20 November 2014, manuscript # AURO-D-14-00185, 16 pages, 7 figure

    A new approach to particle based smoothed marginal MAP

    Get PDF
    We present here a new method of finding the MAP state estimator from the weighted particles representation of marginal smoother distribution. This is in contrast to the usual practice, where the particle with the highest weight is selected as the MAP, although the latter is not necessarily the most probable state estimate. The method developed here uses only particles with corresponding filtering and smoothing weights. We apply this estimator for finding the unknown initial state of a dynamical system and addressing the parameter estimation problem
    corecore