566 research outputs found

    Multimodal Planning under Uncertainty: Task-Motion Planning and Collision Avoidance

    Get PDF
    openIn this thesis we investigate the problem of motion planning under environment uncertainty. Specifically, we focus on Task-Motion Planning (TMP) and probabilistic collision avoidance which are presented as two parts in this thesis. Though the two parts are largely self-contained, collision avoidance is an integral part of TMP or any robot motion planning problem in general. The problem of TMP which is the subject of Part I is by itself challenging and hence in Part I, collision computation is not the main focus and is addressed with a deterministic approach. Moreover, motion planning is performed offline since we assume static obstacles in the environment. Online TMP, incorporating dynamic obstacles or other environment changes is rather difficult due to the computational challenges associated with updating the changing task domain. As such, we devote Part II entirely to the field of online probabilistic collision avoidance motion planning. Of late, TMP for manipulation has attracted significant interest resulting in a proliferation of different approaches. In contrast, TMP for navigation has received considerably less attention. Autonomous robots operating in real-world complex scenarios require planning in the discrete (task) space and the continuous (motion) space. In knowledge-intensive domains, on the one hand, a robot has to reason at the highest-level, for example, the objects to procure, the regions to navigate to in order to acquire them; on the other hand, the feasibility of the respective navigation tasks have to be checked at the execution level. This presents a need for motion-planning-aware task planners. In Part I of this thesis, we discuss a probabilistically complete approach that leverages this task-motion interaction for navigating in large knowledge-intensive domains, returning a plan that is optimal at the task-level. The framework is intended for motion planning under motion and sensing uncertainty, which is formally known as Belief Space Planning (BSP). The underlying methodology is validated in simulation, in an office environment and its scalability is tested in the larger Willow Garage world. A reasonable comparison with a work that is closest to our approach is also provided. We also demonstrate the adaptability of our method by considering a building floor navigation domain. Finally, we also discuss the limitations of our approach and put forward suggestions for improvements and future work. In Part II of this thesis, we present a BSP framework that accounts for the landmark uncertainties during robot localization. We further extend the state-of-the-art by computing an exact expression for the collision probability under Gaussian motion and perception uncertainties. Existing BSP approaches assume that the landmark locations are well known or are known with little uncertainty. However, this might not be true in practice. Noisy sensors and imperfect motions compound to the errors originating from the estimate of environment features. Moreover, possible occlusions and dynamic objects in the environment render imperfect landmark estimation. Consequently, not considering this uncertainty can result in wrongly localizing the robot, leading to inefficient plans. Our approach incorporates the landmark uncertainty within the Bayes filter framework. We also analyze the effect of considering this uncertainty and delineate the conditions under which it can be ignored. Furthermore, we also investigate the problem of safe motion planning under Gaussian motion and sensing uncertainties. Existing approaches approximate the collision probability using upper-bounds that can lead to overly conservative estimate and thereby suboptimal plans. We formulate the collision probability process as a quadratic form in random variables. Under Gaussian distribution assumptions, an exact expression for collision probability is thus obtained which is computable in real-time. Further, we compute a tight upper bound for fast online computation of collision probability and also derive a collision avoidance constraint to be used in an optimization setting. We demonstrate and evaluate our approach using a theoretical example and simulations in single and multi-robot settings using mobile and aerial robots. A comparison of our approach to different state-of-the-art methods are also provided.openXXXIII CICLO - BIOINGEGNERIA E ROBOTICA - BIOENGINEERING AND ROBOTICSThomas, Anton

    Sensor Path Planning for Emitter Localization

    Get PDF
    The localization of a radio frequency (RF) emitter is relevant in many military and civilian applications. The recent decade has seen a rapid progress in the development of small and mobile unmanned aerial vehicles (UAVs), which offer a way to perform emitter localization autonomously. The path a UAV travels influences the localization significantly, making path planning an important part of a mobile emitter localization system. The topic of this thesis is path planning for a UAV that uses bearing measurements to localize a stationary emitter. Using a directional antenna, the direction towards the target can be determined by the UAV rotating around its own vertical axis. During this rotation the UAV is required to remain at the same position, which induces a trade-off between movement and measurement that influences the optimal trajectories. This thesis derives a novel path planning algorithm for localizing an emitter with a UAV. It improves the current state of the art by providing a localization with defined accuracy in a shorter amount of time compared to other algorithms in simulations. The algorithm uses the policy rollout principle to perform a nonmyopic planning and to incorporate the uncertainty of the estimation process into its decision. The concept of an action selection algorithm for policy rollout is introduced, which allows the use of existing optimization algorithms to effectively search the action space. Multiple action selection algorithms are compared to optimize the speed of the path planning algorithm. Similarly, to reduce computational demand, an adaptive grid-based localizer has been developed. To evaluate the algorithm an experimental system has been built and the algorithm was tested on this system. Based on initial experiments, the path planning algorithm has been modified, including a minimal distance to the emitter and an outlier detection step. The resulting algorithm shows promising results in experimental flights

    Control, estimation, and planning algorithms for aggressive flight using onboard sensing

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 107-111).This thesis is motivated by the problem of fixed-wing flight through obstacles using only on-board sensing. To that end, we propose novel algorithms in trajectory generation for fixed-wing vehicles, state estimation in unstructured 3D environments, and planning under uncertainty. Aggressive flight through obstacles using on-board sensing involves nontrivial dynamics, spatially varying measurement properties, and obstacle constraints. To make the planning problem tractable, we restrict the motion plan to a nominal trajectory stabilized with an approximately linear estimator and controller. This restriction allows us to predict distributions over future states given a candidate nominal trajectory. Using these distributions to ensure a bounded probability of collision, the algorithm incrementally constructs a graph of trajectories through state space, while efficiently searching over candidate paths through the graph at each iteration. This process results in a search tree in belief space that provably converges to the optimal path. We analyze the algorithm theoretically and also provide simulation results demonstrating its utility for balancing information gathering to reduce uncertainty and finding low cost paths. Our state estimation method is driven by an inertial measurement unit (IMU) and a planar laser range finder and is suitable for use in real-time on a fixed-wing micro air vehicle (MAV). The algorithm is capable of maintaining accurate state estimates during aggressive flight in unstructured 3D environments without the use of an external positioning system. The localization algorithm is based on an extension of the Gaussian Particle Filter. We partition the state according to measurement independence relationships and then calculate a pseudo-linear update which allows us to use 25x fewer particles than a naive implementation to achieve similar accuracy in the state estimate. Using a multi-step forward fitting method we are able to identify the noise parameters of the IMU leading to high quality predictions of the uncertainty associated with the process model. Our process and measurement models integrate naturally with an exponential coordinates representation of the attitude uncertainty. We demonstrate our algorithms experimentally on a fixed-wing vehicle flying in a challenging indoor environment. The algorithm for generating the trajectories used in the planning process computes a transverse polynomial offset from a nominal Dubins path. The polynomial offset allows us to explicitly specify transverse derivatives in terms of linear equality constraints on the coefficients of the polynomial, and minimize transverse derivatives by using a Quadratic Program (QP) on the polynomial coefficients. This results in a computationally cheap method for generating paths with continuous heading, roll angle, and roll rate for the fixed-wing vehicle, which is fast enough to run in the inner loop of the RRBT.by Adam Parker Bry.S.M

    Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions

    Get PDF
    Open access articleCurrently autonomous or self-driving vehicles are at the heart of academia and industry research because of its multi-faceted advantages that includes improved safety, reduced congestion,lower emissions and greater mobility. Software is the key driving factor underpinning autonomy within which planning algorithms that are responsible for mission-critical decision making hold a significant position. While transporting passengers or goods from a given origin to a given destination, motion planning methods incorporate searching for a path to follow, avoiding obstacles and generating the best trajectory that ensures safety, comfort and efficiency. A range of different planning approaches have been proposed in the literature. The purpose of this paper is to review existing approaches and then compare and contrast different methods employed for the motion planning of autonomous on-road driving that consists of (1) finding a path, (2) searching for the safest manoeuvre and (3) determining the most feasible trajectory. Methods developed by researchers in each of these three levels exhibit varying levels of complexity and performance accuracy. This paper presents a critical evaluation of each of these methods, in terms of their advantages/disadvantages, inherent limitations, feasibility, optimality, handling of obstacles and testing operational environments. Based on a critical review of existing methods, research challenges to address current limitations are identified and future research directions are suggested so as to enhance the performance of planning algorithms at all three levels. Some promising areas of future focus have been identified as the use of vehicular communications (V2V and V2I) and the incorporation of transport engineering aspects in order to improve the look-ahead horizon of current sensing technologies that are essential for planning with the aim of reducing the total cost of driverless vehicles. This critical review on planning techniques presented in this paper, along with the associated discussions on their constraints and limitations, seek to assist researchers in accelerating development in the emerging field of autonomous vehicle research

    Bayesian inference by active sampling

    Get PDF

    Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system

    Get PDF
    Remotely sensed hyperspectral image classification is a very challenging task due to the spatial correlation of the spectral signature and the high cost of true sample labeling. In light of this, the collective inference paradigm allows us to manage the spatial correlation between spectral responses of neighboring pixels, as interacting pixels are labeled simultaneously. The transductive inference paradigm allows us to reduce the inference error for the given set of unlabeled data, as sparsely labeled pixels are learned by accounting for both labeled and unlabeled information. In this paper, both these paradigms contribute to the definition of a spectral-relational classification methodology for imagery data. We propose a novel algorithm to assign a class to each pixel of a sparsely labeled hyperspectral image. It integrates the spectral information and the spatial correlation through an ensemble system. For every pixel of a hyperspectral image, spatial neighborhoods are constructed and used to build application-specific relational features. Classification is performed with an ensemble comprising a classifier learned by considering the available spectral information (associated with the pixel) and the classifiers learned by considering the extracted spatio-relational information (associated with the spatial neighborhoods). The more reliable labels predicted by the ensemble are fed back to the labeled part of the image. Experimental results highlight the importance of the spectral-relational strategy for the accurate transductive classification of hyperspectral images and they validate the proposed algorithm

    Non-rigid medical image registration with extended free form deformations: modelling general tissue transitions

    Get PDF
    Image registration seeks pointwise correspondences between the same or analogous objects in different images. Conventional registration methods generally impose continuity and smoothness throughout the image. However, there are cases in which the deformations may involve discontinuities. In general, the discontinuities can be of different types, depending on the physical properties of the tissue transitions involved and boundary conditions. For instance, in the respiratory motion the lungs slide along the thoracic cage following the tangential direction of their interface. In the normal direction, however, the lungs and the thoracic cage are constrained to be always in contact but they have different material properties producing different compression or expansion rates. In the literature, there is no generic method, which handles different types of discontinuities and considers their directional dependence. The aim of this thesis is to develop a general registration framework that is able to correctly model different types of tissue transitions with a general formalism. This has led to the development of the eXtended Free Form Deformation (XFFD) registration method. XFFD borrows the concept of the interpolation method from the eXtended Finite Element method (XFEM) to incorporate discontinuities by enriching B-spline basis functions, coupled with extra degrees of freedom. XFFD can handle different types of discontinuities and encodes their directional-dependence without any additional constraints. XFFD has been evaluated on digital phantoms, publicly available 3D liver and lung CT images. The experiments show that XFFD improves on previous methods and that it is important to employ the correct model that corresponds to the discontinuity type involved at the tissue transition. The effect of using incorrect models is more evident in the strain, which measures mechanical properties of the tissues
    corecore