3,229 research outputs found

    Stochastic Behavior Analysis of the Gaussian Kernel Least-Mean-Square Algorithm

    Get PDF
    The kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlinear adaptive filtering due to its simplicity and robustness. In kernel adaptive filters, the statistics of the input to the linear filter depends on the parameters of the kernel employed. Moreover, practical implementations require a finite nonlinearity model order. A Gaussian KLMS has two design parameters, the step size and the Gaussian kernel bandwidth. Thus, its design requires analytical models for the algorithm behavior as a function of these two parameters. This paper studies the steady-state behavior and the transient behavior of the Gaussian KLMS algorithm for Gaussian inputs and a finite order nonlinearity model. In particular, we derive recursive expressions for the mean-weight-error vector and the mean-square-error. The model predictions show excellent agreement with Monte Carlo simulations in transient and steady state. This allows the explicit analytical determination of stability limits, and gives opportunity to choose the algorithm parameters a priori in order to achieve prescribed convergence speed and quality of the estimate. Design examples are presented which validate the theoretical analysis and illustrates its application

    A non-Gaussian continuous state space model for asset degradation

    Get PDF
    The degradation model plays an essential role in asset life prediction and condition based maintenance. Various degradation models have been proposed. Within these models, the state space model has the ability to combine degradation data and failure event data. The state space model is also an effective approach to deal with the multiple observations and missing data issues. Using the state space degradation model, the deterioration process of assets is presented by a system state process which can be revealed by a sequence of observations. Current research largely assumes that the underlying system development process is discrete in time or states. Although some models have been developed to consider continuous time and space, these state space models are based on the Wiener process with the Gaussian assumption. This paper proposes a Gamma-based state space degradation model in order to remove the Gaussian assumption. Both condition monitoring observations and failure events are considered in the model so as to improve the accuracy of asset life prediction. A simulation study is carried out to illustrate the application procedure of the proposed model

    Stochastic models of evidence accumulation in changing environments

    Get PDF
    Organisms and ecological groups accumulate evidence to make decisions. Classic experiments and theoretical studies have explored this process when the correct choice is fixed during each trial. However, we live in a constantly changing world. What effect does such impermanence have on classical results about decision making? To address this question we use sequential analysis to derive a tractable model of evidence accumulation when the correct option changes in time. Our analysis shows that ideal observers discount prior evidence at a rate determined by the volatility of the environment, and the dynamics of evidence accumulation is governed by the information gained over an average environmental epoch. A plausible neural implementation of an optimal observer in a changing environment shows that, in contrast to previous models, neural populations representing alternate choices are coupled through excitation. Our work builds a bridge between statistical decision making in volatile environments and stochastic nonlinear dynamics.Comment: 26 pages, 7 figure

    A New Distribution-Free Concept for Representing, Comparing, and Propagating Uncertainty in Dynamical Systems with Kernel Probabilistic Programming

    Full text link
    This work presents the concept of kernel mean embedding and kernel probabilistic programming in the context of stochastic systems. We propose formulations to represent, compare, and propagate uncertainties for fairly general stochastic dynamics in a distribution-free manner. The new tools enjoy sound theory rooted in functional analysis and wide applicability as demonstrated in distinct numerical examples. The implication of this new concept is a new mode of thinking about the statistical nature of uncertainty in dynamical systems
    • 

    corecore