20 research outputs found

    Cooperative Localization with Angular Measurements and Posterior Linearization

    Get PDF
    The application of cooperative localization in vehicular networks is attractive to improve accuracy and coverage. Conventional distance measurements between vehicles are limited by the need for synchronization and provide no heading information of the vehicle. To address this, we present a cooperative localization algorithm using posterior linearization belief propagation (PLBP) utilizing angle-of-arrival (AoA)-only measurements. Simulation results show that both directional and positional root mean squared error (RMSE) of vehicles can be decreased significantly and converge to a low value in a few iterations. Furthermore, the influence of parameters for the vehicular network, such as vehicle density, communication radius, prior uncertainty and AoA measurements noise, is analyzed.Comment: Submitted for possible publication to an IEEE conferenc

    Power Allocation and Parameter Estimation for Multipath-based 5G Positioning

    Get PDF
    We consider a single-anchor multiple-input multiple-output orthogonal frequency-division multiplexing system with imperfectly synchronized transmitter (Tx) and receiver (Rx) clocks, where the Rx estimates its position based on the received reference signals. The Tx, having (imperfect) prior knowledge about the Rx location and the surrounding geometry, transmits reference signals based on a set of fixed beams. We develop strategies for the power allocation among the beams aiming to minimize the expected Cram\ue9r-Rao lower bound for Rx positioning. Additional constraints on the design are included to make the optimized power allocation robust to uncertainty on the line-of-sight (LOS) path direction. Furthermore, the effect of clock asynchronism on the proposed allocation strategies is studied. Our evaluation results show that, for non-negligible synchronization error, it is optimal to allocate a large fraction of the available power for the illumination of the non-LOS (NLOS) paths, which help resolve the clock offset. In addition, the complexity reduction achieved by our proposed suboptimal approach incurs only a small performance degradation. We also propose an off-grid compressed sensing-based position estimation algorithm, which exploits the information on the clock offset provided by NLOS paths, and show that it is asymptotically efficient

    Power Allocation and Parameter Estimation for Multipath-based 5G Positioning

    Get PDF
    We consider a single-anchor multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) system with imperfectly synchronized transmitter (Tx) and receiver (Rx) clocks, where the Rx estimates its position based on the received reference signals. The Tx, having (imperfect) prior knowledge about the Rx location and the surrounding geometry, transmits the reference signals based on a set of fixed beams. In this work, we develop strategies for the power allocation among the beams aiming to minimize the expected Cram\'er-Rao lower bound (CRLB) for Rx positioning. Additional constraints on the design are included to ensure that the line-of-sight (LOS) path is detected with high probability. Furthermore, the effect of clock asynchronism on the resulting allocation strategies is also studied. We also propose a gridless compressed sensing-based position estimation algorithm, which exploits the information on the clock offset provided by non-line-of-sight paths, and show that it is asymptotically efficient.Comment: 30 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Autonomous Swarm Navigation

    Get PDF
    Robotic swarm systems attract increasing attention in a wide variety of applications, where a multitude of self-organized robotic entities collectively accomplish sensing or exploration tasks. Compared to a single robot, a swarm system offers advantages in terms of exploration speed, robustness against single point of failures, and collective observations of spatio-temporal processes. Autonomous swarm navigation, including swarm self-localization, the localization of external sources, and swarm control, is essential for the success of an autonomous swarm application. However, as a newly emerging technology, a thorough study of autonomous swarm navigation is still missing. In this thesis, we systematically study swarm navigation systems, particularly emphasizing on their collective performance. The general theory of swarm navigation as well as an in-depth study on a specific swarm navigation system proposed for future Mars exploration missions are covered. Concerning swarm localization, a decentralized algorithm is proposed, which achieves a near-optimal performance with low complexity for a dense swarm network. Regarding swarm control, a position-aware swarm control concept is proposed. The swarm is aware of not only the position estimates and the estimation uncertainties of itself and the sources, but also the potential motions to enrich position information. As a result, the swarm actively adapts its formation to improve localization performance, without losing track of other objectives, such as goal approaching and collision avoidance. The autonomous swarm navigation concept described in this thesis is verified for a specific Mars swarm exploration system. More importantly, this concept is generally adaptable to an extensive range of swarm applications

    Channel Prediction and Target Tracking for Multi-Agent Systems

    Get PDF
    Mobile moving agents as part of a multi-agent system (MAS) utilize the wireless communication channel to disseminate information and to coordinate between each other. This channel is error-prone and the transmission quality depends on the environment as well as on the configuration of the transmitter and the receiver. For resource allocation and task planning of the agents, it is important to have accurate, yet computationally efficient, methods for learning and predicting the wireless channel. Furthermore, agents utilize on-board sensors to determine both their own state and the states of surrounding objects. To track the states over time, the objects’ dynamical models are combined with the sensors’ measurement models using a Bayesian filter. Through fusion of posterior information output by the agents’ filters, the awareness of the agents is increased. This thesis studies the uncertainties involved in the communication and the positioning of MASs and proposes methods to properly handle them.A framework to learn and predict the wireless channel is proposed, based on a Gaussian process model. It incorporates deterministic path loss and stochastic large scale fading, allowing the estimation of model parameters from measurements and an accurate prediction of the channel quality. Furthermore, the proposed framework considers the present location uncertainty of the transmitting and the receiving agent in both the learning and the prediction procedures. Simulations demonstrate the improved channel learning and prediction performance and show that by taking location uncertainty into account a better communication performance is achieved. The agents’ location uncertainties need to be considered when surrounding objects (targets) are estimated in the global frame of reference. Sensor impairments, such as an imperfect detector or unknown target identity, are incorporated in the Bayesian filtering framework. A Bayesian multitarget tracking filter to jointly estimate the agents’ and the targets’ states is proposed. It is a variant of the Poisson multi-Bernoulli filter and its performance is demonstrated in simulations and experiments. Results for MASs show that the agents’ state uncertainties are reduced by joint agent-target state trackingcompared to tracking only the agents’ states, especially with high-resolution sensors. While target tracking allows for a reduction of the agents’ state uncertainties, highresolution sensors require special care due to multiple detections per target. In this case, the tracking filter needs to explicitly model the dimensions of the target, leading to extended target tracking (ETT). An ETT filter is combined with a Gaussian process shape model, which results in accurate target state and shape estimates. Furthermore, a method to fuse posterior information from multiple ETT filters is proposed, by means of minimizing the Kullback-Leibler average. Simulation results show that the adopted ETT filter accurately tracks the targets’ kinematic states and shapes, and posterior fusion provides a holistic view of the targets provided by multiple ETT filters

    Novel methods for multi-target tracking with applications in sensor registration and fusion

    Get PDF
    Maintaining surveillance over vast volumes of space is an increasingly important capability for the defence industry. A clearer and more accurate picture of a surveillance region could be obtained through sensor fusion between a network of sensors. However, this accurate picture is dependent on the sensor registration being resolved. Any inaccuracies in sensor location or orientation can manifest themselves into the sensor measurements that are used in the fusion process, and lead to poor target tracking performance. Solutions previously proposed in the literature for the sensor registration problem have been based on a number of assumptions that do not always hold in practice, such as having a synchronous network and having small, static registration errors. This thesis will propose a number of solutions to resolving the sensor registration and sensor fusion problems jointly in an efficient manner. The assumptions made in previous works will be loosened or removed, making the solutions more applicable to problems that we are likely to see in practice. The proposed methods will be applied to both simulated data, and a segment of data taken from a live trial in the field

    Nonlinear Filtering based on Log-homotopy Particle Flow : Methodological Clarification and Numerical Evaluation

    Get PDF
    The state estimation of dynamical systems based on measurements is an ubiquitous problem. This is relevant in applications like robotics, industrial manufacturing, computer vision, target tracking etc. Recursive Bayesian methodology can then be used to estimate the hidden states of a dynamical system. The procedure consists of two steps: a process update based on solving the equations modelling the state evolution, and a measurement update in which the prior knowledge about the system is improved based on the measurements. For most real world systems, both the evolution and the measurement models are nonlinear functions of the system states. Additionally, both models can also be perturbed by random noise sources, which could be non-Gaussian in their nature. Unlike linear Gaussian models, there does not exist any optimal estimation scheme for nonlinear/non-Gaussian scenarios. This thesis investigates a particular method for nonlinear and non-Gaussian data assimilation, termed as the log-homotopy based particle flow. Practical filters based on such flows have been known in the literature as Daum Huang filters (DHF), named after the developers. The key concept behind such filters is the gradual inclusion of measurements to counter a major drawback of single step update schemes like the particle filters i.e. namely the degeneracy. This could refer to a situation where the likelihood function has its probability mass well seperated from the prior density, and/or is peaked in comparison. Conventional sampling or grid based techniques do not perform well under such circumstances and in order to achieve a reasonable accuracy, could incur a high processing cost. DHF is a sampling based scheme, which provides a unique way to tackle this challenge thereby lowering the processing cost. This is achieved by dividing the single measurement update step into multiple sub steps, such that particles originating from their prior locations are graduated incrementally until they reach their final locations. The motion is controlled by a differential equation, which is numerically solved to yield the updated states. DH filters, even though not new in the literature, have not been fully explored in the detail yet. They lack the in-depth analysis that the other contemporary filters have gone through. Especially, the implementation details for the DHF are very application specific. In this work, we have pursued four main objectives. The first objective is the exploration of theoretical concepts behind DHF. Secondly, we build an understanding of the existing implementation framework and highlight its potential shortcomings. As a sub task to this, we carry out a detailed study of important factors that affect the performance of a DHF, and suggest possible improvements for each of those factors. The third objective is to use the improved implementation to derive new filtering algorithms. Finally, we have extended the DHF theory and derived new flow equations and filters to cater for more general scenarios. Improvements in the implementation architecture of a standard DHF is one of the key contributions of this thesis. The scope of the applicability of DHF is expanded by combining it with other schemes like the Sequential Markov chain Monte Carlo and the tensor decomposition based solution of the Fokker Planck equation, resulting in the development of new nonlinear filtering algorithms. The standard DHF, using improved implementation and the newly derived algorithms are tested in challenging simulated test scenarios. Detailed analysis have been carried out, together with the comparison against more established filtering schemes. Estimation error and the processing time are used as important performance parameters. We show that our new filtering algorithms exhibit marked performance improvements over the traditional schemes

    Nonlinear Stochastic Filtering for Online State of Charge and Remaining Useful Life Estimation of Lithium-ion Battery

    Get PDF
    Battery state monitoring is one of the key techniques in Battery Management System (BMS). Accurate estimation can help to improve the system performance and to prolong the battery lifetime. The main challenges for the state online estimation of Li-ion batteries are the flat characteristic of open circuit voltage (OCV) with the function of the state of charge. Hence, the focus of this thesis study is to estimation of the state of charge (SOC) of Li-ion with high accuracy, more robustness. A 2nd order RC equivalent circuit model is adapted to battery model for simulation, mathematical model analysis, and dynamics characteristic of battery study. Model parameters are identified with MATLAB battery model simulation. Although with more lumped RC loaders, the model is more accurate, high computation with a higher nonlinear function of output will be. So, a discrete state space model for the battery is developed. For a complex battery model with strong nonlinearity, Sequential Monte Carlo (SMC) method can be utilized to perform the on-line SOC estimation. An SMC integrates the Bayesian learning methods with sequential importance sampling. SMC approximate the posterior density function by a set of particles with associated weights, which is developed in MATLAB environment to estimate on-line SOC. A comparison is presented with Kalman Filtering and Extended Kalman Filtering to validated estimation results with SMC. Finally, the comparison results provide that SMC method is more accurate and robust then KF and EKF. Accurately prediction of Remaining Useful Life of Li-ion batteries is necessary to reliable system operation and monitoring the BMS. An empirical model for capacity degradation has been developed based on experimentally obtained capacity fade data. A nonlinear, non-Gaussian state space model is developed for empirical model. The obtained empirical model used in Sequential Monte Carlo (SMC) framework is to update the on-line state and model parameters to make a prediction of remaining useful life of a Li-ion battery at various lifecycle

    Multi-objective resource optimization in space-aerial-ground-sea integrated networks

    Get PDF
    Space-air-ground-sea integrated (SAGSI) networks are envisioned to connect satellite, aerial, ground, and sea networks to provide connectivity everywhere and all the time in sixth-generation (6G) networks. However, the success of SAGSI networks is constrained by several challenges including resource optimization when the users have diverse requirements and applications. We present a comprehensive review of SAGSI networks from a resource optimization perspective. We discuss use case scenarios and possible applications of SAGSI networks. The resource optimization discussion considers the challenges associated with SAGSI networks. In our review, we categorized resource optimization techniques based on throughput and capacity maximization, delay minimization, energy consumption, task offloading, task scheduling, resource allocation or utilization, network operation cost, outage probability, and the average age of information, joint optimization (data rate difference, storage or caching, CPU cycle frequency), the overall performance of network and performance degradation, software-defined networking, and intelligent surveillance and relay communication. We then formulate a mathematical framework for maximizing energy efficiency, resource utilization, and user association. We optimize user association while satisfying the constraints of transmit power, data rate, and user association with priority. The binary decision variable is used to associate users with system resources. Since the decision variable is binary and constraints are linear, the formulated problem is a binary linear programming problem. Based on our formulated framework, we simulate and analyze the performance of three different algorithms (branch and bound algorithm, interior point method, and barrier simplex algorithm) and compare the results. Simulation results show that the branch and bound algorithm shows the best results, so this is our benchmark algorithm. The complexity of branch and bound increases exponentially as the number of users and stations increases in the SAGSI network. We got comparable results for the interior point method and barrier simplex algorithm to the benchmark algorithm with low complexity. Finally, we discuss future research directions and challenges of resource optimization in SAGSI networks
    corecore