212 research outputs found

    Radiometrically-Accurate Hyperspectral Data Sharpening

    Get PDF
    Improving the spatial resolution of hyperpsectral image (HSI) has traditionally been an important topic in the field of remote sensing. Many approaches have been proposed based on various theories including component substitution, multiresolution analysis, spectral unmixing, Bayesian probability, and tensor representation. However, these methods have some common disadvantages, such as that they are not robust to different up-scale ratios and they have little concern for the per-pixel radiometric accuracy of the sharpened image. Moreover, many learning-based methods have been proposed through decades of innovations, but most of them require a large set of training pairs, which is unpractical for many real problems. To solve these problems, we firstly proposed an unsupervised Laplacian Pyramid Fusion Network (LPFNet) to generate a radiometrically-accurate high-resolution HSI. First, with the low-resolution hyperspectral image (LR-HSI) and the high-resolution multispectral image (HR-MSI), the preliminary high-resolution hyperspectral image (HR-HSI) is calculated via linear regression. Next, the high-frequency details of the preliminary HR-HSI are estimated via the subtraction between it and the CNN-generated-blurry version. By injecting the details to the output of the generative CNN with the low-resolution hyperspectral image (LR-HSI) as input, the final HR-HSI is obtained. LPFNet is designed for fusing the LR-HSI and HR-MSI covers the same Visible-Near-Infrared (VNIR) bands, while the short-wave infrared (SWIR) bands of HSI are ignored. SWIR bands are equally important to VNIR bands, but their spatial details are more challenging to be enhanced because the HR-MSI, used to provide the spatial details in the fusion process, usually has no SWIR coverage or lower-spatial-resolution SWIR. To this end, we designed an unsupervised cascade fusion network (UCFNet) to sharpen the Vis-NIR-SWIR LR-HSI. First, the preliminary high-resolution VNIR hyperspectral image (HR-VNIR-HSI) is obtained with a conventional hyperspectral algorithm. Then, the HR-MSI, the preliminary HR-VNIR-HSI, and the LR-SWIR-HSI are passed to the generative convolutional neural network to produce an HR-HSI. In the training process, the cascade sharpening method is employed to improve stability. Furthermore, the self-supervising loss is introduced based on the cascade strategy to further improve the spectral accuracy. Experiments are conducted on both LPFNet and UCFNet with different datasets and up-scale ratios. Also, state-of-the-art baseline methods are implemented and compared with the proposed methods with different quantitative metrics. Results demonstrate that proposed methods outperform the competitors in all cases in terms of spectral and spatial accuracy

    Low-Light Hyperspectral Image Enhancement

    Full text link
    Due to inadequate energy captured by the hyperspectral camera sensor in poor illumination conditions, low-light hyperspectral images (HSIs) usually suffer from low visibility, spectral distortion, and various noises. A range of HSI restoration methods have been developed, yet their effectiveness in enhancing low-light HSIs is constrained. This work focuses on the low-light HSI enhancement task, which aims to reveal the spatial-spectral information hidden in darkened areas. To facilitate the development of low-light HSI processing, we collect a low-light HSI (LHSI) dataset of both indoor and outdoor scenes. Based on Laplacian pyramid decomposition and reconstruction, we developed an end-to-end data-driven low-light HSI enhancement (HSIE) approach trained on the LHSI dataset. With the observation that illumination is related to the low-frequency component of HSI, while textural details are closely correlated to the high-frequency component, the proposed HSIE is designed to have two branches. The illumination enhancement branch is adopted to enlighten the low-frequency component with reduced resolution. The high-frequency refinement branch is utilized for refining the high-frequency component via a predicted mask. In addition, to improve information flow and boost performance, we introduce an effective channel attention block (CAB) with residual dense connection, which served as the basic block of the illumination enhancement branch. The effectiveness and efficiency of HSIE both in quantitative assessment measures and visual effects are demonstrated by experimental results on the LHSI dataset. According to the classification performance on the remote sensing Indian Pines dataset, downstream tasks benefit from the enhanced HSI. Datasets and codes are available: \href{https://github.com/guanguanboy/HSIE}{https://github.com/guanguanboy/HSIE}

    A Multiresolution Markovian Fusion Model for the Color Visualization of Hyperspectral Images

    Full text link

    Multi-resolution analysis techniques and nonlinear PCA for hybrid pansharpening applications

    No full text
    International audienceHyperspectral images have a higher spectral resolution (i.e., a larger number of bands covering the electromagnetic spectrum), but a lower spatial resolution with respect to multispectral or panchromatic acquisitions. For increasing the capabilities of the data in terms of utilization and interpretation, hyperspectral images having both high spectral and spatial resolution are desired. This can be achieved by combining the hyperspectral image with a high spatial resolution panchromatic image. These techniques are generally known as pansharpening and can be divided into component substitution (CS) and multi-resolution analysis (MRA) based methods. In general, the CS methods result in fused images having high spatial quality but the fused images suffer from spectral distortions. On the other hand, images obtained using MRA techniques are not as sharp as CS methods but they are spectrally consistent. Both substitution and filtering approaches are considered adequate when applied to multispectral and PAN images, but have many drawbacks when the low-resolution image is a hyperspectral image. Thus, one of the main challenges in hyperspectral pansharpening is to improve the spatial resolution while preserving as much as possible of the original spectral information. An effective solution to these problems has been found in the use of hybrid approaches, combining the better spatial information of CS and the more accurate spectral information of MRA techniques. In general, in a hybrid approach a CS technique is used to project the original data into a low dimensionality space. Thus, the PAN image is fused with one or more features by means of MRA approach. Finally the inverse projection is used to obtain the enhanced image in the original data space. These methods, permit to effectively enhance the spatial resolution of the hyperspectral image without relevant spectral distortions and on the same time to reduce the computational load of the entire process. In particular, in this paper we focus our attention on the use of Non-linear Principal Component Analysis (NLPCA) for the projection of the image into a low dimensionality feature space. However, if on one hand the NLPCA has been proved to better represent the intrinsic information of hyperspectral images in the feature space, on the other hand, an analysis of the impact of different fusion techniques applied to the nonlinear principal components in order to define the optimal framework for the hybrid pansharpening has not been carried out yet. More in particular, in this paper we analyze the overall impact of several widely used MRA pansharpening algorithms applied in the nonlinear feature space. The results obtained on both synthetic and real data demonstrate that, an accurate selection of the pansharpening method can lead to an effective improvement of the enhanced hyperspectral image in terms of spectral quality and spatial consistency, as well as a strong reduction in the computational time
    • …
    corecore