16,596 research outputs found

    Search for heavy Majorana or Dirac neutrinos and right-handed WW gauge bosons in final states with charged leptons and jets in pppp collisions at s=13\sqrt{s}=13 TeV with the ATLAS detector

    Full text link
    A search for heavy right-handed Majorana or Dirac neutrinos NRN_{\mathrm{R}} and heavy right-handed gauge bosons WRW_{\mathrm{R}} is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (``resolved'' channel) and topologies with boosted final states with hadronic products partially overlapping and reconstructed as a large-radius jet (``boosted'' channel). The events are selected from pppp collision data at the LHC with an integrated luminosity of 139 fb1^{-1} collected by the ATLAS detector at s\sqrt{s} = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy right-handed WRW_{\mathrm{R}} boson and NRN_{\mathrm{R}} plane. The excluded region extends to about m(WR)=6.4m(W_{\mathrm{R}}) = 6.4 TeV for both Majorana and Dirac NRN_{\mathrm{R}} neutrinos at m(NR)<1m(N_{\mathrm{R}})<1 TeV. NRN_{\mathrm{R}} with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at m(WR)=4.8m(W_{\mathrm{R}})=4.8 TeV for the Majorana neutrinos, and limits of m(NR)m(N_{\mathrm{R}}) up to 3.6 TeV for m(WR)=5.2m(W_{\mathrm{R}}) = 5.2 (5.05.0) TeV in the electron (muon) channel are set for the Dirac neutrinos.Comment: 48 pages in total, author list starting page 31, 9 figures, 5 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-39

    Chiral active fluids: Odd viscosity, active turbulence, and directed flows of hydrodynamic microrotors

    Get PDF
    While the number of publications on rotating active matter has rapidly increased in recent years, studies on purely hydrodynamically interacting rotors on the microscale are still rare, especially from the perspective of particle based hydrodynamic simulations. The work presented here targets to fill this gap. By means of high-performance computer simulations, performed in a highly parallelised fashion on graphics processing units, the dynamics of ensembles of up to 70,000 rotating colloids immersed in an explicit mesoscopic solvent consisting out of up to 30 million fluid particles, are investigated. Some of the results presented in this thesis have been worked out in collaboration with experimentalists, such that the theoretical considerations developed in this thesis are supported by experiments, and vice versa. The studied system, modelled in order to resemble the essential physics of the experimentally realisable system, consists out of rotating magnetic colloidal particles, i.e., (micro-)rotors, rotating in sync to an externally applied magnetic field, where the rotors solely interact via hydrodynamic and steric interactions. Overall, the agreement between simulations and experiments is very good, proving that hydrodynamic interactions play a key role in this and related systems. While already an isolated rotating colloid is driven out of equilibrium, only collections of two or more rotors have experimentally shown to be able to convert the rotational energy input into translational dynamics in an orbital rotating fashion. The rotating colloids inject circular flows into the fluid, such that detailed balance is broken, and it is not a priori known whether equilibrium properties of colloids can be extended to isolated rotating colloids. A joint theoretical and experimental analysis of isolated, pairs, and small groups of hydrodynamically interacting rotors is given in chapter 2. While the translational dynamics of isolated rotors effectively resemble the dynamics of non-rotating colloids, the orbital rotation of pairs of rotors can be described with leading order hydrodynamics and a two-dimensional analogy of Faxén’s law is derived. In chapter 3, a homogeneously distributed ensemble of rotors (bulk) as a realisation of a chiral active fluid is studied and it is explicitly shown computationally and experimentally that it carries odd viscosity. The mutual orbital translation of rotors and an increase of the effective solvent viscosity with rotor density lead to a non-monotonous behaviour of the average translational velocity. Meanwhile, the rotor suspension bears a finite osmotic compressibility resulting from the long-ranged nature of hydrody- namic interactions such that rotational and odd stresses are transmitted through the solvent also at small and intermediate rotor densities. Consequently, density inhomogeneities predicted for chiral active fluids with odd viscosity can be found and allow for an explicit measurement of odd viscosity in simulations and experiments. At intermediate densities, the collective dynamics shows the emergence of multi-scale vortices and chaotic motion which is identified as active turbulence with a self-similar power-law decay in the energy spectrum, showing that the injected energy on the rotor scale is transported to larger scales, similar to the inverse energy cascade of clas- sical two-dimensional turbulence. While either odd viscosity or active turbulence have been reported in chiral active matter previously, the system studied here shows that the emergence of both simultaneously is possible resulting from the osmotic compressibility and hydrodynamic mediation of odd and active stresses. The collective dynamics of colloids rotating out of phase, i.e., where a constant torque instead of a constant angular velocity is applied, is shown to be qualitatively very similar. However, at smaller densities, local density inhomogeneities imply position dependent angular velocities of the rotors resulting from inter-rotor friction. While the friction of a quasi-2D layer of active colloids with the substrate is often not easily modifiable in experiments, the incorporation of substrate friction into the simulation models typically implies a considerable increase in computational effort. In chapter 4, a very efficient way of incorporating the friction with a substrate into a two-dimensional multiparticle collision dynamics solvent is introduced, allowing for an explicit investigation of the influences of substrate on active dynamics. For the rotor fluid, it is explicitly shown that the influence of the substrate friction results in a cutoff of the hydrodynamic interaction length, such that the maximum size of the formed vortices is controlled by the substrate friction, also resulting in a cutoff in the energy spectrum, because energy is taken out of the system at the respective length. These findings are in agreement with the experiments. Since active particles in confinement are known to organise in states of collective dynamics, ensembles of rotationally actuated colloids are studied in circular confinement and in the presence of periodic obstacle lattices in chapters 5 and 6, respectively. The results show that the chaotic active turbulent transport of rotors in suspension can be enhanced and guided resulting from edge flows generated at the boundaries, as has recently been reported for a related chiral active system. The consequent collective rotor dynamics can be regarded as a superposition of active turbulent and imposed flows, leading to on average stationary flows. In contrast to the bulk dynamics, the imposed flows inject additional energy into the system on the long length scales, and the same scaling behaviour of the energy spectrum as in bulk is only obtained if the energy injection scales, due to the mutual generation of rotor translational dynamics throughout the system and the edge flows, are well separated. The combination of edge flow and entropic layering at the boundaries leads to oscillating hydrodynamic stresses and consequently to an oscillating vorticity profile. In the presence of odd viscosity, this consequently leads to non-trivial steady-state density modulations at the boundary, resulting from a balance of osmotic pressure and odd stresses. Relevant for the efficient dispersion and mixing of inert particles on the mesoscale by means of active turbulent mixing powered by rotors, a study of the dynamics of a binary mixture consisting out of rotors and passive particles is presented in chapter 7. Because the rotors are not self-propelled, but the translational dynamics is induced by the surrounding rotors, the passive particles, which do not inject further energy into the system, are transported according to the same mechanism as the rotors. The collective dynamics thus resembles the pure rotor bulk dynamics at the respective density of only rotors. However, since no odd stresses act between the passive particles, only mutual rotor interactions lead to odd stresses leading to the accumulation of rotors in the regions of positive vorticity. This density increase is associated with a pressure increase, which balances the odd stresses acting on the rotors. However, the passive particles are only subject to the accumulation induced pressure increase such that these particles are transported into the areas of low rotor concentration, i.e., the regions of negative vorticity. Under conditions of sustained vortex flow, this results in segregation of both particle types. Since local symmetry breaking can convert injected rotational into translational energy, microswimmers can be constructed out of rotor materials when a suitable breaking of symmetry is kept in the vicinity of a rotor. One hypothetical realisation, i.e., a coupled rotor pair consisting out of two rotors of opposite angular velocity and of fixed distance, termed a birotor, are studied in chapter 8. The birotor pumps the fluid into one direction and consequently translates into the opposite direction, and creates a flow field reminiscent of a source doublet, or sliplet flow field. Fixed in space the birotor might be an interesting realisation of a microfluidic pump. The trans- lational dynamics of a birotor can be mapped onto the active Brownian particle model for single swimmers. However, due to the hydrodynamic interactions among the rotors, the birotor ensemble dynamics do not show the emergence of stable motility induced clustering. The reason for this is the flow created by birotor in small aggregates which effectively pushes further arriving birotors away from small aggregates, which eventually are all dispersed by thermal fluctuations

    Vegetation responses to variations in climate: A combined ordinary differential equation and sequential Monte Carlo estimation approach

    Get PDF
    Vegetation responses to variation in climate are a current research priority in the context of accelerated shifts generated by climate change. However, the interactions between environmental and biological factors still represent one of the largest uncertainties in projections of future scenarios, since the relationship between drivers and ecosystem responses has a complex and nonlinear nature. We aimed to develop a model to study the vegetation’s primary productivity dynamic response to temporal variations in climatic conditions as measured by rainfall, temperature and radiation. Thus, we propose a new way to estimate the vegetation response to climate via a non-autonomous version of a classical growth curve, with a time-varying growth rate and carrying capacity parameters according to climate variables. With a Sequential Monte Carlo Estimation to account for complexities in the climate-vegetation relationship to minimize the number of parameters. The model was applied to six key sites identified in a previous study, consisting of different arid and semiarid rangelands from North Patagonia, Argentina. For each site, we selected the time series of MODIS NDVI, and climate data from ERA5 Copernicus hourly reanalysis from 2000 to 2021. After calculating the time series of the a posteriori distribution of parameters, we analyzed the explained capacity of the model in terms of the linear coefficient of determination and the parameters distribution variation. Results showed that most rangelands recorded changes in their sensitivity over time to climatic factors, but vegetation responses were heterogeneous and influenced by different drivers. Differences in this climate-vegetation relationship were recorded among different cases: (1) a marginal and decreasing sensitivity to temperature and radiation, respectively, but a high sensitivity to water availability; (2) high and increasing sensitivity to temperature and water availability, respectively; and (3) a case with an abrupt shift in vegetation dynamics driven by a progressively decreasing sensitivity to water availability, without any changes in the sensitivity either to temperature or radiation. Finally, we also found that the time scale, in which the ecosystem integrated the rainfall phenomenon in terms of the width of the window function used to convolve the rainfall series into a water availability variable, was also variable in time. This approach allows us to estimate the connection degree between ecosystem productivity and climatic variables. The capacity of the model to identify changes over time in the vegetation-climate relationship might inform decision-makers about ecological transitions and the differential impact of climatic drivers on ecosystems.Estación Experimental Agropecuaria BarilocheFil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; ArgentinaFil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Perri, Daiana Vanesa. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; ArgentinaFil: Perri, Daiana Vanesa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Easdale, Marcos Horacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; ArgentinaFil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentin

    A direct-laser-written heart-on-a-chip platform for generation and stimulation of engineered heart tissues

    Full text link
    In this dissertation, we first develop a versatile microfluidic heart-on-a-chip model to generate 3D-engineered human cardiac microtissues in highly-controlled microenvironments. The platform, which is enabled by direct laser writing (DLW), has tailor-made attachment sites for cardiac microtissues and comes with integrated strain actuators and force sensors. Application of external pressure waves to the platform results in controllable time-dependent forces on the microtissues. Conversely, oscillatory forces generated by the microtissues are transduced into measurable electrical outputs. After characterization of the responsivity of the transducers, we demonstrate the capabilities of this platform by studying the response of cardiac microtissues to prescribed mechanical loading and pacing. Next, we tune the geometry and mechanical properties of the platform to enable parametric studies on engineered heart tissues. We explore two geometries: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites. The attachment sites are placed symmetrically in the longitudinal direction. The former geometry promotes uniaxial contraction of the tissues; the latter additionally induces diagonal fiber alignment. We systematically increase the length for both configurations and observe a positive correlation between fiber alignment at the center of the microtissues and tissue length. However, progressive thinning and “necking” is also observed, leading to the failure of longer tissues over time. We use the DLW technique to improve the platform, softening the mechanical environment and optimizing the attachment sites for generation of stable microtissues at each length and geometry. Furthermore, electrical pacing is incorporated into the platform to evaluate the functional dynamics of stable microtissues over the entire range of physiological heart rates. Here, we typically observe a decrease in active force and contraction duration as a function of frequency. Lastly, we use a more traditional ?TUG platform to demonstrate the effects of subthreshold electrical pacing on the rhythm of the spontaneously contracting cardiac microtissues. Here, we observe periodic M:N patterns, in which there are ? cycles of stimulation for every ? tissue contractions. Using electric field amplitude, pacing frequency, and homeostatic beating frequencies of the tissues, we provide an empirical map for predicting the emergence of these rhythms

    Decoding spatial location of attended audio-visual stimulus with EEG and fNIRS

    Get PDF
    When analyzing complex scenes, humans often focus their attention on an object at a particular spatial location in the presence of background noises and irrelevant visual objects. The ability to decode the attended spatial location would facilitate brain computer interfaces (BCI) for complex scene analysis. Here, we tested two different neuroimaging technologies and investigated their capability to decode audio-visual spatial attention in the presence of competing stimuli from multiple locations. For functional near-infrared spectroscopy (fNIRS), we targeted dorsal frontoparietal network including frontal eye field (FEF) and intra-parietal sulcus (IPS) as well as superior temporal gyrus/planum temporal (STG/PT). They all were shown in previous functional magnetic resonance imaging (fMRI) studies to be activated by auditory, visual, or audio-visual spatial tasks. We found that fNIRS provides robust decoding of attended spatial locations for most participants and correlates with behavioral performance. Moreover, we found that FEF makes a large contribution to decoding performance. Surprisingly, the performance was significantly above chance level 1s after cue onset, which is well before the peak of the fNIRS response. For electroencephalography (EEG), while there are several successful EEG-based algorithms, to date, all of them focused exclusively on auditory modality where eye-related artifacts are minimized or controlled. Successful integration into a more ecological typical usage requires careful consideration for eye-related artifacts which are inevitable. We showed that fast and reliable decoding can be done with or without ocular-removal algorithm. Our results show that EEG and fNIRS are promising platforms for compact, wearable technologies that could be applied to decode attended spatial location and reveal contributions of specific brain regions during complex scene analysis

    Modelling uncertainties for measurements of the H → γγ Channel with the ATLAS Detector at the LHC

    Get PDF
    The Higgs boson to diphoton (H → γγ) branching ratio is only 0.227 %, but this final state has yielded some of the most precise measurements of the particle. As measurements of the Higgs boson become increasingly precise, greater import is placed on the factors that constitute the uncertainty. Reducing the effects of these uncertainties requires an understanding of their causes. The research presented in this thesis aims to illuminate how uncertainties on simulation modelling are determined and proffers novel techniques in deriving them. The upgrade of the FastCaloSim tool is described, used for simulating events in the ATLAS calorimeter at a rate far exceeding the nominal detector simulation, Geant4. The integration of a method that allows the toolbox to emulate the accordion geometry of the liquid argon calorimeters is detailed. This tool allows for the production of larger samples while using significantly fewer computing resources. A measurement of the total Higgs boson production cross-section multiplied by the diphoton branching ratio (σ × Bγγ) is presented, where this value was determined to be (σ × Bγγ)obs = 127 ± 7 (stat.) ± 7 (syst.) fb, within agreement with the Standard Model prediction. The signal and background shape modelling is described, and the contribution of the background modelling uncertainty to the total uncertainty ranges from 18–2.4 %, depending on the Higgs boson production mechanism. A method for estimating the number of events in a Monte Carlo background sample required to model the shape is detailed. It was found that the size of the nominal γγ background events sample required a multiplicative increase by a factor of 3.60 to adequately model the background with a confidence level of 68 %, or a factor of 7.20 for a confidence level of 95 %. Based on this estimate, 0.5 billion additional simulated events were produced, substantially reducing the background modelling uncertainty. A technique is detailed for emulating the effects of Monte Carlo event generator differences using multivariate reweighting. The technique is used to estimate the event generator uncertainty on the signal modelling of tHqb events, improving the reliability of estimating the tHqb production cross-section. Then this multivariate reweighting technique is used to estimate the generator modelling uncertainties on background V γγ samples for the first time. The estimated uncertainties were found to be covered by the currently assumed background modelling uncertainty

    Learning disentangled speech representations

    Get PDF
    A variety of informational factors are contained within the speech signal and a single short recording of speech reveals much more than the spoken words. The best method to extract and represent informational factors from the speech signal ultimately depends on which informational factors are desired and how they will be used. In addition, sometimes methods will capture more than one informational factor at the same time such as speaker identity, spoken content, and speaker prosody. The goal of this dissertation is to explore different ways to deconstruct the speech signal into abstract representations that can be learned and later reused in various speech technology tasks. This task of deconstructing, also known as disentanglement, is a form of distributed representation learning. As a general approach to disentanglement, there are some guiding principles that elaborate what a learned representation should contain as well as how it should function. In particular, learned representations should contain all of the requisite information in a more compact manner, be interpretable, remove nuisance factors of irrelevant information, be useful in downstream tasks, and independent of the task at hand. The learned representations should also be able to answer counter-factual questions. In some cases, learned speech representations can be re-assembled in different ways according to the requirements of downstream applications. For example, in a voice conversion task, the speech content is retained while the speaker identity is changed. And in a content-privacy task, some targeted content may be concealed without affecting how surrounding words sound. While there is no single-best method to disentangle all types of factors, some end-to-end approaches demonstrate a promising degree of generalization to diverse speech tasks. This thesis explores a variety of use-cases for disentangled representations including phone recognition, speaker diarization, linguistic code-switching, voice conversion, and content-based privacy masking. Speech representations can also be utilised for automatically assessing the quality and authenticity of speech, such as automatic MOS ratings or detecting deep fakes. The meaning of the term "disentanglement" is not well defined in previous work, and it has acquired several meanings depending on the domain (e.g. image vs. speech). Sometimes the term "disentanglement" is used interchangeably with the term "factorization". This thesis proposes that disentanglement of speech is distinct, and offers a viewpoint of disentanglement that can be considered both theoretically and practically

    Targeting Fusion Proteins of HIV-1 and SARS-CoV-2

    Get PDF
    Viruses are disease-causing pathogenic agents that require host cells to replicate. Fusion of host and viral membranes is critical for the lifecycle of enveloped viruses. Studying viral fusion proteins can allow us to better understand how they shape immune responses and inform the design of therapeutics such as drugs, monoclonal antibodies, and vaccines. This thesis discusses two approaches to targeting two fusion proteins: Env from HIV-1 and S from SARS-CoV-2. The first chapter of this thesis is an introduction to viruses with a specific focus on HIV-1 CD4 mimetic drugs and antibodies against SARS-CoV-2. It discusses the architecture of these viruses and fusion proteins and how small molecules, peptides, and antibodies can target these proteins successfully to treat and prevent disease. In addition, a brief overview is included of the techniques involved in structural biology and how it has informed the study of viruses. For the interested reader, chapter 2 contains a review article that serves as a more in-depth introduction for both viruses as well as how the use of structural biology has informed the study of viral surface proteins and neutralizing antibody responses to them. The subsequent chapters provide a body of work divided into two parts. The first part in chapter 3 involves a study on conformational changes induced in the HIV-1 Env protein by CD4-mimemtic drugs using single particle cryo-EM. The second part encompassing chapters 4 and 5 includes two studies on antibodies isolated from convalescent COVID-19 donors. The former involves classification of antibody responses to the SARS-CoV-2 S receptor-binding domain (RBD). The latter discusses an anti-RBD antibody class that binds to a conserved epitope on the RBD and shows cross-binding and cross-neutralization to other coronaviruses in the sarbecovirus subgenus.</p

    Application of advanced fluorescence microscopy and spectroscopy in live-cell imaging

    Get PDF
    Since its inception, fluorescence microscopy has been a key source of discoveries in cell biology. Advancements in fluorophores, labeling techniques and instrumentation have made fluorescence microscopy a versatile quantitative tool for studying dynamic processes and interactions both in vitro and in live-cells. In this thesis, I apply quantitative fluorescence microscopy techniques in live-cell environments to investigate several biological processes. To study Gag processing in HIV-1 particles, fluorescence lifetime imaging microscopy and single particle tracking are combined to follow nascent HIV-1 virus particles during assembly and release on the plasma membrane of living cells. Proteolytic release of eCFP embedded in the Gag lattice of immature HIV-1 virus particles results in a characteristic increase in its fluorescence lifetime. Gag processing and rearrangement can be detected in individual virus particles using this approach. In another project, a robust method for quantifying Förster resonance energy transfer in live-cells is developed to allow direct comparison of live-cell FRET experiments between laboratories. Finally, I apply image fluctuation spectroscopy to study protein behavior in a variety of cellular environments. Image cross-correlation spectroscopy is used to study the oligomerization of CXCR4, a G-protein coupled receptor on the plasma membrane. With raster image correlation spectroscopy, I measure the diffusion of histones in the nucleoplasm and heterochromatin domains of the nuclei of early mouse embryos. The lower diffusion coefficient of histones in the heterochromatin domain supports the conclusion that heterochromatin forms a liquid phase-separated domain. The wide range of topics covered in this thesis demonstrate that fluorescence microscopy is more than just an imaging tool but also a powerful instrument for the quantification and elucidation of dynamic cellular processes

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri
    corecore