42,766 research outputs found

    Detecting Bimodality in Astronomical Datasets

    Get PDF
    We discuss statistical techniques for detecting and quantifying bimodality in astronomical datasets. We concentrate on the KMM algorithm, which estimates the statistical significance of bimodality in such datasets and objectively partitions data into sub-populations. By simulating bimodal distributions with a range of properties we investigate the sensitivity of KMM to datasets with varying characteristics. Our results facilitate the planning of optimal observing strategies for systems where bimodality is suspected. Mixture-modeling algorithms similar to the KMM algorithm have been used in previous studies to partition the stellar population of the Milky Way into subsystems. We illustrate the broad applicability of KMM by analysing published data on globular cluster metallicity distributions, velocity distributions of galaxies in clusters, and burst durations of gamma-ray sources. PostScript versions of the tables and figures, as well as FORTRAN code for KMM and instructions for its use, are available by anonymous ftp from kula.phsx.ukans.edu.Comment: 32 page

    Clustering student skill set profiles in a unit hypercube using mixtures of multivariate betas

    Get PDF
    <br>This paper presents a finite mixture of multivariate betas as a new model-based clustering method tailored to applications where the feature space is constrained to the unit hypercube. The mixture component densities are taken to be conditionally independent, univariate unimodal beta densities (from the subclass of reparameterized beta densities given by Bagnato and Punzo 2013). The EM algorithm used to fit this mixture is discussed in detail, and results from both this beta mixture model and the more standard Gaussian model-based clustering are presented for simulated skill mastery data from a common cognitive diagnosis model and for real data from the Assistment System online mathematics tutor (Feng et al 2009). The multivariate beta mixture appears to outperform the standard Gaussian model-based clustering approach, as would be expected on the constrained space. Fewer components are selected (by BIC-ICL) in the beta mixture than in the Gaussian mixture, and the resulting clusters seem more reasonable and interpretable.</br> <br>This article is in technical report form, the final publication is available at http://www.springerlink.com/openurl.asp?genre=article &id=doi:10.1007/s11634-013-0149-z</br&gt

    A probabilistic approach to emission-line galaxy classification

    Get PDF
    We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and WHα\rm W_{H\alpha} vs. [NII]/Hα\alpha (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT datasets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log\log [OIII]/Hβ\beta, log\log [NII]/Hα\alpha, and log\log EW(Hα{\alpha}), optical parameters. The best-fit GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's Active Galaxy Nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence -- based on four GCs -- for the existence of a Seyfert/LINER dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated to the LINER and Passive galaxies on the BPT and WHAN diagrams respectively. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical datasets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox (https://cointoolbox.github.io/GMM\_Catalogue/).Comment: Accepted for publication in MNRA

    Where are compact groups in the local Universe?

    Get PDF
    The purpose of this work is to perform a statistical analysis of the location of compact groups in the Universe from observational and semi-analytical points of view. We used the velocity-filtered compact group sample extracted from the Two Micron All Sky Survey for our analysis. We also used a new sample of galaxy groups identified in the 2M++ galaxy redshift catalogue as tracers of the large-scale structure. We defined a procedure to search in redshift space for compact groups that can be considered embedded in other overdense systems and applied this criterion to several possible combinations of different compact and galaxy group subsamples. We also performed similar analyses for simulated compact and galaxy groups identified in a 2M++ mock galaxy catalogue constructed from the Millennium Run Simulation I plus a semi-analytical model of galaxy formation. We observed that only 27%\sim27\% of the compact groups can be considered to be embedded in larger overdense systems, that is, most of the compact groups are more likely to be isolated systems. The embedded compact groups show statistically smaller sizes and brighter surface brightnesses than non-embedded systems. No evidence was found that embedded compact groups are more likely to inhabit galaxy groups with a given virial mass or with a particular dynamical state. We found very similar results when the analysis was performed using mock compact and galaxy groups. Based on the semi-analytical studies, we predict that 70%70\% of the embedded compact groups probably are 3D physically dense systems. Finally, real space information allowed us to reveal the bimodal behaviour of the distribution of 3D minimum distances between compact and galaxy groups. The location of compact groups should be carefully taken into account when comparing properties of galaxies in environments that are a priori different.Comment: 14 pages, 5 figures, 8 tables. Accepted for publication in Astronomy & Astrophysics. Tables B1 and B2 will only be available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A

    Quantifying the Evolutionary Self Structuring of Embodied Cognitive Networks

    Full text link
    We outline a possible theoretical framework for the quantitative modeling of networked embodied cognitive systems. We notice that: 1) information self structuring through sensory-motor coordination does not deterministically occur in Rn vector space, a generic multivariable space, but in SE(3), the group structure of the possible motions of a body in space; 2) it happens in a stochastic open ended environment. These observations may simplify, at the price of a certain abstraction, the modeling and the design of self organization processes based on the maximization of some informational measures, such as mutual information. Furthermore, by providing closed form or computationally lighter algorithms, it may significantly reduce the computational burden of their implementation. We propose a modeling framework which aims to give new tools for the design of networks of new artificial self organizing, embodied and intelligent agents and the reverse engineering of natural ones. At this point, it represents much a theoretical conjecture and it has still to be experimentally verified whether this model will be useful in practice.

    Bridge Simulation and Metric Estimation on Landmark Manifolds

    Full text link
    We present an inference algorithm and connected Monte Carlo based estimation procedures for metric estimation from landmark configurations distributed according to the transition distribution of a Riemannian Brownian motion arising from the Large Deformation Diffeomorphic Metric Mapping (LDDMM) metric. The distribution possesses properties similar to the regular Euclidean normal distribution but its transition density is governed by a high-dimensional PDE with no closed-form solution in the nonlinear case. We show how the density can be numerically approximated by Monte Carlo sampling of conditioned Brownian bridges, and we use this to estimate parameters of the LDDMM kernel and thus the metric structure by maximum likelihood

    Maximum Fidelity

    Full text link
    The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversion to absolute model concordance (p value). Fidelity maximization allows identification of the most concordant model distribution, generating a method for parameter estimation, with neighboring, less concordant distributions providing the "uncertainty" in this estimate. Maximum fidelity provides an optimal approach for parameter estimation (superior to maximum likelihood) and a generally optimal approach for goodness-of-fit assessment of arbitrary models applied to univariate data. Extensions to binary data, binned data, multidimensional data, and classical parametric and nonparametric statistical tests are described. Maximum fidelity provides a philosophically consistent, robust, and seemingly optimal foundation for statistical inference. All findings are presented in an elementary way to be immediately accessible to all researchers utilizing statistical analysis.Comment: 66 pages, 32 figures, 7 tables, submitte
    corecore