23,625 research outputs found

    A Quasi-Random Approach to Matrix Spectral Analysis

    Get PDF
    Inspired by the quantum computing algorithms for Linear Algebra problems [HHL,TaShma] we study how the simulation on a classical computer of this type of "Phase Estimation algorithms" performs when we apply it to solve the Eigen-Problem of Hermitian matrices. The result is a completely new, efficient and stable, parallel algorithm to compute an approximate spectral decomposition of any Hermitian matrix. The algorithm can be implemented by Boolean circuits in O(log2n)O(\log^2 n) parallel time with a total cost of O(nω+1)O(n^{\omega+1}) Boolean operations. This Boolean complexity matches the best known rigorous O(log2n)O(\log^2 n) parallel time algorithms, but unlike those algorithms our algorithm is (logarithmically) stable, so further improvements may lead to practical implementations. All previous efficient and rigorous approaches to solve the Eigen-Problem use randomization to avoid bad condition as we do too. Our algorithm makes further use of randomization in a completely new way, taking random powers of a unitary matrix to randomize the phases of its eigenvalues. Proving that a tiny Gaussian perturbation and a random polynomial power are sufficient to ensure almost pairwise independence of the phases (mod(2π))(\mod (2\pi)) is the main technical contribution of this work. This randomization enables us, given a Hermitian matrix with well separated eigenvalues, to sample a random eigenvalue and produce an approximate eigenvector in O(log2n)O(\log^2 n) parallel time and O(nω)O(n^\omega) Boolean complexity. We conjecture that further improvements of our method can provide a stable solution to the full approximate spectral decomposition problem with complexity similar to the complexity (up to a logarithmic factor) of sampling a single eigenvector.Comment: Replacing previous version: parallel algorithm runs in total complexity nω+1n^{\omega+1} and not nωn^{\omega}. However, the depth of the implementing circuit is log2(n)\log^2(n): hence comparable to fastest eigen-decomposition algorithms know

    Strong approximation results for the empirical process of stationary sequences

    Full text link
    We prove a strong approximation result for the empirical process associated to a stationary sequence of real-valued random variables, under dependence conditions involving only indicators of half lines. This strong approximation result also holds for the empirical process associated to iterates of expanding maps with a neutral fixed point at zero, as soon as the correlations decrease more rapidly than n1δn^{-1-\delta} for some positive δ\delta. This shows that our conditions are in some sense optimal.Comment: Published in at http://dx.doi.org/10.1214/12-AOP798 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Exact BER Performance of Asynchronous MC-DS-CDMA over Fading Channels

    No full text
    In this contribution an accurate average Bit Error Rate (BER) formula is derived for MC-DS-CDMA in the context of asynchronous transmissions and random spreading sequences. We consider a flat Nakagami-m fading channel for each subcarrier. Our analysis is based on the Characteristic Function (CF) and does not rely on any assumption concerning the statistical behavior of the interference. We develop a new closed-form expression for the conditional CF of the inter-carrier interference and provide a procedure for calculating the exact BER expressed in the form of a single numerical integration. The accuracy of the Standard Gaussian Approximation (SGA) technique is also evaluated. Link-level results confirm the accuracy of the SGA for most practical conditions

    Growth and Structure of Stochastic Sequences

    Full text link
    We introduce a class of stochastic integer sequences. In these sequences, every element is a sum of two previous elements, at least one of which is chosen randomly. The interplay between randomness and memory underlying these sequences leads to a wide variety of behaviors ranging from stretched exponential to log-normal to algebraic growth. Interestingly, the set of all possible sequence values has an intricate structure.Comment: 4 pages, 4 figure

    Rates of convergence in the strong invariance principle under projective criteria

    Full text link
    We give rates of convergence in the strong invariance principle for stationary sequences satisfying some projective criteria. The conditions are expressed in terms of conditional expectations of partial sums of the initial sequence. Our results apply to a large variety of examples, including mixing processes of different kinds. We present some applications to symmetric random walks on the circle, to functions of dependent sequences, and to a reversible Markov chain
    corecore