393 research outputs found

    Artifact-based calibration and performance verification of the MScMS-II

    Get PDF
    Large scale measuring systems, i.e. measuring systems characterized by a measurement volume from some meters up to some hundreds of meters, are gaining importance in industry to check large parts or track the position of automated vehicles. In contrast with classical monolithic measuring systems, modern large scale measuring systems are constituted by constellations of sensors able to track the position of objects by triangulation or trilateration. This new design allows a greater system flexibility, scalability, and portability, together with a general reduction of costs. The MScMS-II is a large scale measuring system based on infrared triangulation. It has been designed to guarantee the maximum flexibility and reconfigurability, so every set-up procedure has been reduced as much as possible, so that its deployment and calibration requires a short time. However, its accuracy could benefit of a more complete volumetric calibration through the definition of a model of the volumetric error to be compensated. This work continues the one proposed at the CAT2012 conference [1]. An artifact has been developed which is constituted by a series of infrared reflective spheres, thus being well visible by the MScMS-II system. It has been calibrated with a ~1 µm uncertainty. It carries two series of balls. A pair of spheres with a reciprocal distance equal to 800 mm can be used for system calibration. A series of couples of balls with reciprocal distances equal to 200, 400, 600, 800, and 1000 mm respectively can be adopted for performance verification similarly to what is suggested in the ISO 10360 series of standards for CMMs. Experimental results are proposed for the calibration and performance verification procedure of the MScMS-II system

    Fluid quantity gaging

    Get PDF
    A system for measuring the mass of liquid in a tank on orbit with 1 percent accuracy was developed and demonstrated. An extensive tradeoff identified adiabatic compression as the only gaging technique that is independent of gravity or its orientation, and of the size and distribution of bubbles in the tank. This technique is applicable to all Earth-storable and cryogenic liquids of interest for Space Station use, except superfluid helium, and can be applied to tanks of any size, shape, or internal structure. Accuracy of 0.2 percent was demonstrated in the laboratory, and a detailed analytical model was developed and verified by testing. A flight system architecture is presented that allows meeting the needs of a broad range of space fluid systems without custom development for each user

    Chromatic confocal gauging for high precision dimensional metrology

    Get PDF
    Interest in the chromatic confocal microscope in the high precision dimensional metrology industry is growing rapidly. In fact, the chromatic confocal microscope offers a “stylus like” distance measurement applicable to various surface types. In addition, the chromatic confocal microscope can potentially compete in resolution with contact measurement probes, while significantly increasing the sampling rate to several kHz. Therefore, such technology is key to the Taylor Hobson Ltd. strategy. The work embodied in this thesis focuses on the design, development, and evaluation of a low cost and high resolution version of the chromatic confocal microscope. Both product are currently in pre-production phase. The low cost version the chromatic confocal microscope is designed to be a compact and cost effective system while exhibiting “state of the art” performances. In fact, the raw material cost of the system is below £500, this being achieved while exhibiting an optical head outer diameter of 8 mm, a working distance of more than 27 mm, and a resolution better than 100 nm over a measurement range exceeding 7 mm. The high resolution version of the chromatic confocal microscope is dedicated to precision. The aim of the design is to exhibit the highest achievable resolution while maintaining a measurement working distance exceeding 12 mm. By tailoring the chromatic dispersion to be appropriately low, a resolution of better than 10 nm is achieved. Both designs have been tailored within a few design cycles; this has been achieved through the development of two novel models, the spectral irradiance model and the measurement standard deviation model. The spectral irradiance model enables the analytical estimation of the chromatic confocal peak from only the optical parameters of the optical heads. Based on a geometric approach; this is more than 5 times more precise than the previously used model based on wave optics. Furthermore, by applying a fully integrated system design approach incorporating design, production, and test of optical systems, the resulting chromatic confocal system surpasses comparable commercially available chromatic confocal gauges in terms of cost, resolution, numerical aperture, range of measurement, and working distance. Such performance is further enhanced by the use of staircase diffractive surfaces. Staircase diffractive surfaces are special hybrid aspheric diffractive surfaces exhibiting insignificant manufacturing losses allowing the design to be only limited by the scalar diffraction theory used by ray tracing packages. In addition, staircase diffractive lenses permit the passively athermalisation of the optical head of the chromatic confocal microscope. The work encapsulated in this thesis extends the current understanding of the measurement environment impact on chromatic confocal gauges. This study includes the impact of the surface reflectivity, roughness, and slope onto the linearity of the chromatic confocal microscope. Using the previously described findings, methods to mitigate the linearity error induced by the surface roughness, reflectivity, and slope are presented and applied.Engineering and Physical Sciences Research Council (EPSRC) scholarshi

    Multi-scale metrology for automated non-destructive testing systems

    Get PDF
    This thesis was previously held under moratorium from 5/05/2020 to 5/05/2022The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples.The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples

    Study and Characterization of a Camera-based Distributed System for Large-Volume Dimensional Metrology Applications

    Get PDF
    Large-Volume Dimensional Metrology (LVDM) deals with dimensional inspection of large objects with dimensions in the order of tens up to hundreds of meters. Typical large volume dimensional metrology applications concern the assembly/disassembly phase of large objects, referring to industrial engineering. Based on different technologies and measurement principles, a wealth of LVDM systems have been proposed and developed in the literature, just to name a few, e.g., optical based systems such as laser tracker, laser radar, and mechanical based systems such as gantry CMM and multi-joints artificial arm CMM, and so on. Basically, the main existing LVDM systems can be divided into two categories, i.e. centralized systems and distributed systems, according to the scheme of hardware configuration. By definition, a centralized system is a stand-alone unit which works independently to provide measurements of a spatial point, while a distributed system, is defined as a system that consists of a series of sensors which work cooperatively to provide measurements of a spatial point, and usually individual sensor cannot measure the coordinates separately. Some representative distributed systems in the literature are iGPS, MScMS-II, and etc. The current trend of LVDM systems seem to orient towards distributed systems, and actually, distributed systems demonstrate many advantages that distinguish themselves from conventional centralized systems
    corecore