2,181 research outputs found

    Getting Close Without Touching: Near-Gathering for Autonomous Mobile Robots

    Get PDF
    In this paper we study the Near-Gathering problem for a finite set of dimensionless, deterministic, asynchronous, anonymous, oblivious and autonomous mobile robots with limited visibility moving in the Euclidean plane in Look-Compute-Move (LCM) cycles. In this problem, the robots have to get close enough to each other, so that every robot can see all the others, without touching (i.e., colliding with) any other robot. The importance of solving the Near-Gathering problem is that it makes it possible to overcome the restriction of having robots with limited visibility. Hence it allows to exploit all the studies (the majority, actually) done on this topic in the unlimited visibility setting. Indeed, after the robots get close enough to each other, they are able to see all the robots in the system, a scenario that is similar to the one where the robots have unlimited visibility. We present the first (deterministic) algorithm for the Near-Gathering problem, to the best of our knowledge, which allows a set of autonomous mobile robots to nearly gather within finite time without ever colliding. Our algorithm assumes some reasonable conditions on the input configuration (the Near-Gathering problem is easily seen to be unsolvable in general). Further, all the robots are assumed to have a compass (hence they agree on the "North" direction), but they do not necessarily have the same handedness (hence they may disagree on the clockwise direction). We also show how the robots can detect termination, i.e., detect when the Near-Gathering problem has been solved. This is crucial when the robots have to perform a generic task after having nearly gathered. We show that termination detection can be obtained even if the total number of robots is unknown to the robots themselves (i.e., it is not a parameter of the algorithm), and robots have no way to explicitly communicate.Comment: 25 pages, 8 fiugre

    A Distributed Algorithm for Gathering Many Fat Mobile Robots in the Plane

    Full text link
    In this work we consider the problem of gathering autonomous robots in the plane. In particular, we consider non-transparent unit-disc robots (i.e., fat) in an asynchronous setting. Vision is the only mean of coordination. Using a state-machine representation we formulate the gathering problem and develop a distributed algorithm that solves the problem for any number of robots. The main idea behind our algorithm is for the robots to reach a configuration in which all the following hold: (a) The robots' centers form a convex hull in which all robots are on the convex, (b) Each robot can see all other robots, and (c) The configuration is connected, that is, every robot touches another robot and all robots together form a connected formation. We show that starting from any initial configuration, the robots, making only local decisions and coordinate by vision, eventually reach such a configuration and terminate, yielding a solution to the gathering problem.Comment: 39 pages, 5 figure

    Gathering Anonymous, Oblivious Robots on a Grid

    Full text link
    We consider a swarm of nn autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robots is the following: The robots do not have a common compass, only have a constant viewing radius, are autonomous and indistinguishable, can move at most a constant distance in each step, cannot communicate, are oblivious and do not have flags or states. The only gathering algorithm under this robot model, with known runtime bounds, needs O(n2)\mathcal{O}(n^2) rounds and works in the Euclidean plane. The underlying time model for the algorithm is the fully synchronous FSYNC\mathcal{FSYNC} model. On the other side, in the case of the 2-dimensional grid, the only known gathering algorithms for the same time and a similar local model additionally require a constant memory, states and "flags" to communicate these states to neighbors in viewing range. They gather in time O(n)\mathcal{O}(n). In this paper we contribute the (to the best of our knowledge) first gathering algorithm on the grid that works under the same simple local model as the above mentioned Euclidean plane strategy, i.e., without memory (oblivious), "flags" and states. We prove its correctness and an O(n2)\mathcal{O}(n^2) time bound in the fully synchronous FSYNC\mathcal{FSYNC} time model. This time bound matches the time bound of the best known algorithm for the Euclidean plane mentioned above. We say gathering is done if all robots are located within a 2Ă—22\times 2 square, because in FSYNC\mathcal{FSYNC} such configurations cannot be solved

    Robots with Lights: Overcoming Obstructed Visibility Without Colliding

    Full text link
    Robots with lights is a model of autonomous mobile computational entities operating in the plane in Look-Compute-Move cycles: each agent has an externally visible light which can assume colors from a fixed set; the lights are persistent (i.e., the color is not erased at the end of a cycle), but otherwise the agents are oblivious. The investigation of computability in this model, initially suggested by Peleg, is under way, and several results have been recently established. In these investigations, however, an agent is assumed to be capable to see through another agent. In this paper we start the study of computing when visibility is obstructable, and investigate the most basic problem for this setting, Complete Visibility: The agents must reach within finite time a configuration where they can all see each other and terminate. We do not make any assumption on a-priori knowledge of the number of agents, on rigidity of movements nor on chirality. The local coordinate system of an agent may change at each activation. Also, by definition of lights, an agent can communicate and remember only a constant number of bits in each cycle. In spite of these weak conditions, we prove that Complete Visibility is always solvable, even in the asynchronous setting, without collisions and using a small constant number of colors. The proof is constructive. We also show how to extend our protocol for Complete Visibility so that, with the same number of colors, the agents solve the (non-uniform) Circle Formation problem with obstructed visibility
    • …
    corecore