435 research outputs found

    Signed Distance-based Deep Memory Recommender

    Full text link
    Personalized recommendation algorithms learn a user's preference for an item by measuring a distance/similarity between them. However, some of the existing recommendation models (e.g., matrix factorization) assume a linear relationship between the user and item. This approach limits the capacity of recommender systems, since the interactions between users and items in real-world applications are much more complex than the linear relationship. To overcome this limitation, in this paper, we design and propose a deep learning framework called Signed Distance-based Deep Memory Recommender, which captures non-linear relationships between users and items explicitly and implicitly, and work well in both general recommendation task and shopping basket-based recommendation task. Through an extensive empirical study on six real-world datasets in the two recommendation tasks, our proposed approach achieved significant improvement over ten state-of-the-art recommendation models

    Neural Attentive Session-based Recommendation

    Full text link
    Given e-commerce scenarios that user profiles are invisible, session-based recommendation is proposed to generate recommendation results from short sessions. Previous work only considers the user's sequential behavior in the current session, whereas the user's main purpose in the current session is not emphasized. In this paper, we propose a novel neural networks framework, i.e., Neural Attentive Recommendation Machine (NARM), to tackle this problem. Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later. We then compute the recommendation scores for each candidate item with a bi-linear matching scheme based on this unified session representation. We train NARM by jointly learning the item and session representations as well as their matchings. We carried out extensive experiments on two benchmark datasets. Our experimental results show that NARM outperforms state-of-the-art baselines on both datasets. Furthermore, we also find that NARM achieves a significant improvement on long sessions, which demonstrates its advantages in modeling the user's sequential behavior and main purpose simultaneously.Comment: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. arXiv admin note: text overlap with arXiv:1511.06939, arXiv:1606.08117 by other author

    Session-based Recommendation with Graph Neural Networks

    Full text link
    The problem of session-based recommendation aims to predict user actions based on anonymous sessions. Previous methods model a session as a sequence and estimate user representations besides item representations to make recommendations. Though achieved promising results, they are insufficient to obtain accurate user vectors in sessions and neglect complex transitions of items. To obtain accurate item embedding and take complex transitions of items into account, we propose a novel method, i.e. Session-based Recommendation with Graph Neural Networks, SR-GNN for brevity. In the proposed method, session sequences are modeled as graph-structured data. Based on the session graph, GNN can capture complex transitions of items, which are difficult to be revealed by previous conventional sequential methods. Each session is then represented as the composition of the global preference and the current interest of that session using an attention network. Extensive experiments conducted on two real datasets show that SR-GNN evidently outperforms the state-of-the-art session-based recommendation methods consistently.Comment: 9 pages, 4 figures, accepted by AAAI Conference on Artificial Intelligence (AAAI-19

    Quaternion-Based Self-Attentive Long Short-Term User Preference Encoding for Recommendation

    Full text link
    Quaternion space has brought several benefits over the traditional Euclidean space: Quaternions (i) consist of a real and three imaginary components, encouraging richer representations; (ii) utilize Hamilton product which better encodes the inter-latent interactions across multiple Quaternion components; and (iii) result in a model with smaller degrees of freedom and less prone to overfitting. Unfortunately, most of the current recommender systems rely on real-valued representations in Euclidean space to model either user's long-term or short-term interests. In this paper, we fully utilize Quaternion space to model both user's long-term and short-term preferences. We first propose a QUaternion-based self-Attentive Long term user Encoding (QUALE) to study the user's long-term intents. Then, we propose a QUaternion-based self-Attentive Short term user Encoding (QUASE) to learn the user's short-term interests. To enhance our models' capability, we propose to fuse QUALE and QUASE into one model, namely QUALSE, by using a Quaternion-based gating mechanism. We further develop Quaternion-based Adversarial learning along with the Bayesian Personalized Ranking (QABPR) to improve our model's robustness. Extensive experiments on six real-world datasets show that our fused QUALSE model outperformed 11 state-of-the-art baselines, improving 8.43% at HIT@1 and 10.27% at NDCG@1 on average compared with the best baseline

    A Hierarchical Self-Attentive Model for Recommending User-Generated Item Lists

    Full text link
    User-generated item lists are a popular feature of many different platforms. Examples include lists of books on Goodreads, playlists on Spotify and YouTube, collections of images on Pinterest, and lists of answers on question-answer sites like Zhihu. Recommending item lists is critical for increasing user engagement and connecting users to new items, but many approaches are designed for the item-based recommendation, without careful consideration of the complex relationships between items and lists. Hence, in this paper, we propose a novel user-generated list recommendation model called AttList. Two unique features of AttList are careful modeling of (i) hierarchical user preference, which aggregates items to characterize the list that they belong to, and then aggregates these lists to estimate the user preference, naturally fitting into the hierarchical structure of item lists; and (ii) item and list consistency, through a novel self-attentive aggregation layer designed for capturing the consistency of neighboring items and lists to better model user preference. Through experiments over three real-world datasets reflecting different kinds of user-generated item lists, we find that AttList results in significant improvements in NDCG, Precision@k, and Recall@k versus a suite of state-of-the-art baselines. Furthermore, all code and data are available at https://github.com/heyunh2015/AttList.Comment: Accepted by CIKM 201
    • …
    corecore