32,640 research outputs found

    Synthesis of all-digital delay lines

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe synthesis of delay lines (DLs) is a core task during the generation of matched delays, ring oscillator clocks or delay monitors. The main figure of merit of a DL is the fidelity to track variability. Unfortunately, complex systems have a great diversity of timing paths that exhibit different sensitivities to static and dynamic variations. Designing DLs that capture this diversity is an ardous task. This paper proposes an algorithmic approach for the synthesis of DLs that can be integrated in a conventional design flow. The algorithm uses heuristics to perform a combinatorial search in a vast space of solutions that combine different types of gates and wire lengths. The synthesized DLs are (1) all digital, i.e., built of conventional standard cells, (2) accurate in tracking variability and (3) configurable at runtime. Experimental results with a commercial standard cell library confirm the quality of the DLs that only exhibit delay mismatches of about 1% on average over all PVT corners.Peer ReviewedPostprint (author's final draft

    Probing RNA recognition by human ADAR2 using a high-throughput mutagenesis method.

    Get PDF
    Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA. In humans, ADAR1 and ADAR2 catalyze this modification and their malfunction correlates with disease. Recently our laboratory reported crystal structures of the human ADAR2 deaminase domain bound to duplex RNA revealing a protein loop that binds the RNA on the 5' side of the modification site. This 5' binding loop appears to be one contributor to substrate specificity differences between ADAR family members. In this study, we endeavored to reveal detailed structure-activity relationships in this loop to advance our understanding of RNA recognition by ADAR2. To achieve this goal, we established a high-throughput mutagenesis approach which allows rapid screening of ADAR variants in single yeast cells and provides quantitative evaluation for enzymatic activity. Using this approach, we determined the importance of specific amino acids at 19 different positions in the ADAR2 5' binding loop and revealed six residues that provide essential structural elements supporting the fold of the loop and key RNA-binding functional groups. This work provided new insight into RNA recognition by ADAR2 and established a new tool for defining structure-function relationships in ADAR reactions

    Synthetic biology and microdevices : a powerful combination

    Get PDF
    Recent developments demonstrate that the combination of microbiology with micro-and nanoelectronics is a successful approach to develop new miniaturized sensing devices and other technologies. In the last decade, there has been a shift from the optimization of the abiotic components, for example, the chip, to the improvement of the processing capabilities of cells through genetic engineering. The synthetic biology approach will not only give rise to systems with new functionalities, but will also improve the robustness and speed of their response towards applied signals. To this end, the development of new genetic circuits has to be guided by computational design methods that enable to tune and optimize the circuit response. As the successful design of genetic circuits is highly dependent on the quality and reliability of its composing elements, intense characterization of standard biological parts will be crucial for an efficient rational design process in the development of new genetic circuits. Microengineered devices can thereby offer a new analytical approach for the study of complex biological parts and systems. By summarizing the recent techniques in creating new synthetic circuits and in integrating biology with microdevices, this review aims at emphasizing the power of combining synthetic biology with microfluidics and microelectronics

    Engineering orthogonal dual transcription factors for multi-input synthetic promoters

    Get PDF
    Synthetic biology has seen an explosive growth in the capability of engineering artificial gene circuits from transcription factors (TFs), particularly in bacteria. However, most artificial networks still employ the same core set of TFs (for example LacI, TetR and cI). The TFs mostly function via repression and it is difficult to integrate multiple inputs in promoter logic. Here we present to our knowledge the first set of dual activator-repressor switches for orthogonal logic gates, based on bacteriophage λ cI variants and multi-input promoter architectures. Our toolkit contains 12 TFs, flexibly operating as activators, repressors, dual activator–repressors or dual repressor–repressors, on up to 270 synthetic promoters. To engineer non cross-reacting cI variants, we design a new M13 phagemid-based system for the directed evolution of biomolecules. Because cI is used in so many synthetic biology projects, the new set of variants will easily slot into the existing projects of other groups, greatly expanding current engineering capacities

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC
    • …
    corecore