7,299 research outputs found

    DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

    Get PDF
    Recently much attention has been paid to quantum circuit design to prepare for the future "quantum computation era." Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.Comment: 15 pages, 14 figures, to appear IEICE Trans. Fundamentals, Vol. E91-A, No.1

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Depth-Optimized Reversible Circuit Synthesis

    Full text link
    In this paper, simultaneous reduction of circuit depth and synthesis cost of reversible circuits in quantum technologies with limited interaction is addressed. We developed a cycle-based synthesis algorithm which uses negative controls and limited distance between gate lines. To improve circuit depth, a new parallel structure is introduced in which before synthesis a set of disjoint cycles are extracted from the input specification and distributed into some subsets. The cycles of each subset are synthesized independently on different sets of ancillae. Accordingly, each disjoint set can be synthesized by different synthesis methods. Our analysis shows that the best worst-case synthesis cost of reversible circuits in the linear nearest neighbor architecture is improved by the proposed approach. Our experimental results reveal the effectiveness of the proposed approach to reduce cost and circuit depth for several benchmarks.Comment: 13 pages, 6 figures, 5 tables; Quantum Information Processing (QINP) journal, 201

    Cyclic Boolean circuits

    Get PDF
    A Boolean circuit is a collection of gates and wires that performs a mapping from Boolean inputs to Boolean outputs. The accepted wisdom is that such circuits must have acyclic (i.e., loop-free or feed-forward) topologies. In fact, the model is often defined this way – as a directed acyclic graph (DAG). And yet simple examples suggest that this is incorrect. We advocate that Boolean circuits should have cyclic topologies (i.e., loops or feedback paths). In other work, we demonstrated the practical implications of this view: digital circuits can be designed with fewer gates if they contain cycles. In this paper, we explore the theoretical underpinnings of the idea. We show that the complexity of implementing Boolean functions can be lower with cyclic topologies than with acyclic topologies. With examples, we show that certain Boolean functions can be implemented by cyclic circuits with as little as one-half the number gates that are required by equivalent acyclic circuits

    Synthesis of Quantum Logic Circuits

    Full text link
    We discuss efficient quantum logic circuits which perform two tasks: (i) implementing generic quantum computations and (ii) initializing quantum registers. In contrast to conventional computing, the latter task is nontrivial because the state-space of an n-qubit register is not finite and contains exponential superpositions of classical bit strings. Our proposed circuits are asymptotically optimal for respective tasks and improve published results by at least a factor of two. The circuits for generic quantum computation constructed by our algorithms are the most efficient known today in terms of the number of expensive gates (quantum controlled-NOTs). They are based on an analogue of the Shannon decomposition of Boolean functions and a new circuit block, quantum multiplexor, that generalizes several known constructions. A theoretical lower bound implies that our circuits cannot be improved by more than a factor of two. We additionally show how to accommodate the severe architectural limitation of using only nearest-neighbor gates that is representative of current implementation technologies. This increases the number of gates by almost an order of magnitude, but preserves the asymptotic optimality of gate counts.Comment: 18 pages; v5 fixes minor bugs; v4 is a complete rewrite of v3, with 6x more content, a theory of quantum multiplexors and Quantum Shannon Decomposition. A key result on generic circuit synthesis has been improved to ~23/48*4^n CNOTs for n qubit
    corecore