22,710 research outputs found

    Computational paradigm for dynamic logic-gates in neuronal activity

    Full text link
    In 1943 McCulloch and Pitts suggested that the brain is composed of reliable logic-gates similar to the logic at the core of today's computers. This framework had a limited impact on neuroscience, since neurons exhibit far richer dynamics. Here we propose a new experimentally corroborated paradigm in which the truth tables of the brain's logic-gates are time dependent, i.e. dynamic logicgates (DLGs). The truth tables of the DLGs depend on the history of their activity and the stimulation frequencies of their input neurons. Our experimental results are based on a procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in-vitro. We demonstrate that the underlying biological mechanism is the unavoidable increase of neuronal response latencies to ongoing stimulations, which imposes a nonuniform gradual stretching of network delays. The limited experimental results are confirmed and extended by simulations and theoretical arguments based on identical neurons with a fixed increase of the neuronal response latency per evoked spike. We anticipate our results to lead to better understanding of the suitability of this computational paradigm to account for the brain's functionalities and will require the development of new systematic mathematical methods beyond the methods developed for traditional Boolean algebra.Comment: 32 pages, 14 figures, 1 tabl

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Monolithically Patterned Wide-Narrow-Wide All-Graphene Devices

    Full text link
    We investigate theoretically the performance advantages of all-graphene nanoribbon field-effect transistors (GNRFETs) whose channel and source/drain (contact) regions are patterned monolithically from a two-dimensional single sheet of graphene. In our simulated devices, the source/drain and interconnect regions are composed of wide graphene nanoribbon (GNR) sections that are semimetallic, while the channel regions consist of narrow GNR sections that open semiconducting bandgaps. Our simulation employs a fully atomistic model of the device, contact and interfacial regions using tight-binding theory. The electronic structures are coupled with a self-consistent three-dimensional Poisson's equation to capture the nontrivial contact electrostatics, along with a quantum kinetic formulation of transport based on non-equilibrium Green's functions (NEGF). Although we only consider a specific device geometry, our results establish several general performance advantages of such monolithic devices (besides those related to fabrication and patterning), namely the improved electrostatics, suppressed short-channel effects, and Ohmic contacts at the narrow-to-wide interfaces.Comment: 9 pages, 11 figures, 2 table

    Power reduction techniques for memory elements

    Get PDF
    High performance and computational capability in the current generation processors are made possible by small feature sizes and high device density. To maintain the current drive strength and control the dynamic power in these processors, simultaneous scaling down of supply and threshold voltages is performed. High device density and low threshold voltages result in an increase in the leakage current dissipation. Large on chip caches are integrated onto the current generation processors which are becoming a major contributor to total leakage power. In this work, a novel methodology is proposed to minimize the leakage power and dynamic power. The proposed static power reduction technique, GALEOR (GAted LEakage transistOR), introduces stacks by placing high threshold voltage transistors and consists of inherent control logic. The proposed dynamic power reduction technique, adaptive phase tag cache, achieves power savings through varying tag size for a design window. Testing and verification of the proposed techniques is performed on a two level cache system. Power delay squared product is used as a metric to measure the effectiveness of the proposed techniques. The GALEOR technique achieves 30% reduction when implemented on CMOS benchmark circuits and an overall leakage savings of 9% when implemented on the two level cache systems. The proposed dynamic power reduction technique achieves 10% savings when implemented on individual modules of the two level cache and an overall savings of 3% when implemented on the entire two level cache system
    corecore