485 research outputs found

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    CAD methodologies for low power and reliable 3D ICs

    Get PDF
    The main objective of this dissertation is to explore and develop computer-aided-design (CAD) methodologies and optimization techniques for reliability, timing performance, and power consumption of through-silicon-via(TSV)-based and monolithic 3D IC designs. The 3D IC technology is a promising answer to the device scaling and interconnect problems that industry faces today. Yet, since multiple dies are stacked vertically in 3D ICs, new problems arise such as thermal, power delivery, and so on. New physical design methodologies and optimization techniques should be developed to address the problems and exploit the design freedom in 3D ICs. Towards the objective, this dissertation includes four research projects. The first project is on the co-optimization of traditional design metrics and reliability metrics for 3D ICs. It is well known that heat removal and power delivery are two major reliability concerns in 3D ICs. To alleviate thermal problem, two possible solutions have been proposed: thermal-through-silicon-vias (T-TSVs) and micro-fluidic-channel (MFC) based cooling. For power delivery, a complex power distribution network is required to deliver currents reliably to all parts of the 3D IC while suppressing the power supply noise to an acceptable level. However, these thermal and power networks pose major challenges in signal routability and congestion. In this project, a co-optimization methodology for signal, power, and thermal interconnects in 3D ICs is presented. The goal of the proposed approach is to improve signal, thermal, and power noise metrics and to provide fast and accurate design space explorations for early design stages. The second project is a study on 3D IC partition. For a 3D IC, the target circuit needs to be partitioned into multiple parts then mapped onto the dies. The partition style impacts design quality such as footprint, wirelength, timing, and so on. In this project, the design methodologies of 3D ICs with different partition styles are demonstrated. For the LEON3 multi-core microprocessor, three partitioning styles are compared: core-level, block-level, and gate-level. The design methodologies for such partitioning styles and their implications on the physical layout are discussed. Then, to perform timing optimizations for 3D ICs, two timing constraint generation methods are demonstrated that lead to different design quality. The third project is on the buffer insertion for timing optimization of 3D ICs. For high performance 3D ICs, it is crucial to perform thorough timing optimizations. Among timing optimization techniques, buffer insertion is known to be the most effective way. The TSVs have a large parasitic capacitance that increases the signal slew and the delay on the downstream. In this project, a slew-aware buffer insertion algorithm is developed that handles full 3D nets and considers TSV parasitics and slew effects on delay. Compared with the well-known van Ginneken algorithm and a commercial tool, the proposed algorithm finds buffering solutions with lower delay values and acceptable runtime overhead. The last project is on the ultra-high-density logic designs for monolithic 3D ICs. The nano-scale 3D interconnects available in monolithic 3D IC technology enable ultra-high-density device integration at the individual transistor-level. The benefits and challenges of monolithic 3D integration technology for logic designs are investigated. First, a 3D standard cell library for transistor-level monolithic 3D ICs is built and their timing and power behavior are characterized. Then, various interconnect options for monolithic 3D ICs that improve design quality are explored. Next, timing-closed, full-chip GDSII layouts are built and iso-performance power comparisons with 2D IC designs are performed. Important design metrics such as area, wirelength, timing, and power consumption are compared among transistor-level monolithic 3D, gate-level monolithic 3D, TSV-based 3D, and traditional 2D designs.PhDCommittee Chair: Lim, Sung Kyu; Committee Member: Bakir, Muhannad; Committee Member: Kim, Hyesoon; Committee Member: Lee, Hsien-Hsin; Committee Member: Mukhopadhyay, Saiba

    Cell Transformations and Physical Design Techniques for 3D Monolithic Integrated Circuits

    Get PDF
    3D monolithic integration (3DMI), also termed as sequential integration, is a potential technology for future gigascale circuits. In 3DMI technology the 3D contacts, connecting different active layers, are in the order of few 100 nm. Given the advantage of such small contacts, 3DMI enables fine-grain (gate-level) partitioning of circuits. In this work we present three cell transformation techniques for standard cell based ICs with 3DMI technology. As a major contribution of this work, we propose a design flow comprising of a cell transformation technique, cell-on-cell stacking, and a physical design technique (CELONCELPD) aimed at placing cells transformed with cell-on-cell stacking. We analyze and compare various cell transformation techniques for 3DMI technology without disrupting the regularity of the IC design flow. Our experiments demonstrate the effectiveness of CELONCEL design technique, yielding us an area reduction of 37.5%, 16.2% average reduction in wirelength, and 6.2% average improvement in overall delay, compared with a 2D case when benchmarked across various designs in 45nm technology node

    CELONCEL: Effective Design Technique for 3-D Monolithic Integration targeting High Performance Integrated Circuits

    Get PDF
    3-D monolithic integration (3DMI), also termed as sequential integration, is a potential technology for future gigascale circuits. Since the device layers are processed in sequential order, the size of the vertical contacts is similar to traditional contacts unlike in the case of parallel 3-D integration with through silicon vias (TSVs). Given the advantage of such small contacts, 3DMI enables manufacturing multiple active layers very close to each other. In this work we propose two different strategies of stacking standard cells in 3-D without breaking the regularity of the conventional design flow: a) Vertical stacking of diffusion areas (Intra-Cell stacking) that supports complete reuse of 2-D physical design tools and b) vertical stacking of cells over others (Cell-on-Cell stacking). A placement tool (CELONCEL-placer) targeting the Cell-on-Cell placement problem is proposed to allow high quality 3-D layout generation. Our experiments demonstrate the effectiveness of CELONCEL technique, fetching us an area gain of 37.5%, 15.51% reduction in wirelength, and 13.49% improvement in overall delay, compared with a 2-D case when benchmarked across an interconnect dominated low-densityparity-check (LDPC) decoder at 45nm technology node

    Compact CMOS active quenching/recharge circuit for SPAD arrays

    Get PDF
    Avalanche diodes operating in Geiger mode are able to detect single photon events. They can be employed to photon counting and time-of-flight estimation. In order to ensure proper operation of these devices, the avalanche current must be rapidly quenched, and, later on, the initial equilibrium must be restored. In this paper, we present an active quenching/recharge circuit specially designed to be integrated in the form of an array of single-photon avalanche diode (SPAD) detectors. Active quenching and recharge provide benefits like an accurately controllable pulse width and afterpulsing reduction. In addition, this circuit yields one of the lowest reported area occupations and power consumptions. The quenching mechanism employed is based on a positive feedback loop that accelerates quenching right after sensing the avalanche current. We have employed a current starved inverter for the regulation of the hold-off time, which is more compact than other reported controllable delay implementations. This circuit has been fabricated in a standard 0.18 μm complementary metal-oxide-semiconductor (CMOS) technology. The SPAD has a quasi-circular shape of 12 μm diameter active area. The fill factor is about 11%. The measured time resolution of the detector is 187 ps. The photon-detection efficiency (PDE) at 540 nm wavelength is about 5% at an excess voltage of 900 mV. The break-down voltage is 10.3 V. A dark count rate of 19 kHz is measured at room temperature. Worst case post-layout simulations show a 117 ps quenching and 280 ps restoring times. The dead time can be accurately tuned from 5 to 500 ns. The pulse-width jitter is below 1.8 ns when dead time is set to 40 ns.Ministerio de Economía y Competitividad TEC2012-38921-C02, IPT-2011-1625-430000, IPC-20111009 CDTIJunta de Andalucía TIC 2338-2013Office of Naval Research (USA) N00014141035

    The Integration of nearthreshold and subthreshold CMOS logic for energy minimization

    Get PDF
    With the rapid growth in the use of portable electronic devices, more emphasis has recently been placed on low-energy circuit design. Digital subthreshold complementary metal-oxide-semiconductor (CMOS) circuit design is one area of study that offers significant energy reduction by operating at a supply voltage substantially lower than the threshold voltage of the transistor. However, these energy savings come at a critical cost to performance, restricting its use to severely energy-constrained applications such as microsensor nodes. In an effort to mitigate this performance degradation in low-energy designs, nearthreshold circuit design has been proposed and implemented in digital circuits such as Intel\u27s energy-efficient hardware accelerator. The application spectrum of nearthreshold and subthreshold design could be broadened by integrating these cells into high-performance designs. This research focuses on the integration of characterized nearthreshold and subthreshold standard cells into high-performance functional modules. Within these functional modules, energy minimization is achieved while satisfying performance constraints by replacing non-critical path logic with nearthreshold and subthreshold logic cells. Specifically, the critical path method is used to bind the timing and energy constraints of the design. The design methodology was verified and tested with several benchmark circuits, including a cryptographic hash function, Skein. An average energy savings of 41.15% was observed at a circuit performance degradation factor of 10. The energy overhead of the level shifters accounted for at least 8.5% of the energy consumption of the optimized circuit, with an average energy overhead of 26.76%. A heuristic approach is developed for estimating the energy savings of the optimized design

    Merged Two-Stage Power Converter With Soft Charging Switched-Capacitor Stage in 180 nm CMOS

    Get PDF
    In this paper, we introduce a merged two-stage dc-dc power converter for low-voltage power delivery. By separating the transformation and regulation function of a dc-dc power converter into two stages, both large voltage transformation and high switching frequency can be achieved. We show how the switched-capacitor stage can operate under soft charging conditions by suitable control and integration (merging) of the two stages. This mode of operation enables improved efficiency and/or power density in the switched-capacitor stage. A 5-to-1 V, 0.8 W integrated dc-dc converter has been developed in 180 nm CMOS. The converter achieves a peak efficiency of 81%, with a regulation stage switching frequency of 10 MHz.Interconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation

    A novel deep submicron bulk planar sizing strategy for low energy subthreshold standard cell libraries

    Get PDF
    Engineering andPhysical Science ResearchCouncil (EPSRC) and Arm Ltd for providing funding in the form of grants and studentshipsThis work investigates bulk planar deep submicron semiconductor physics in an attempt to improve standard cell libraries aimed at operation in the subthreshold regime and in Ultra Wide Dynamic Voltage Scaling schemes. The current state of research in the field is examined, with particular emphasis on how subthreshold physical effects degrade robustness, variability and performance. How prevalent these physical effects are in a commercial 65nm library is then investigated by extensive modeling of a BSIM4.5 compact model. Three distinct sizing strategies emerge, cells of each strategy are laid out and post-layout parasitically extracted models simulated to determine the advantages/disadvantages of each. Full custom ring oscillators are designed and manufactured. Measured results reveal a close correlation with the simulated results, with frequency improvements of up to 2.75X/2.43X obs erved for RVT/LVT devices respectively. The experiment provides the first silicon evidence of the improvement capability of the Inverse Narrow Width Effect over a wide supply voltage range, as well as a mechanism of additional temperature stability in the subthreshold regime. A novel sizing strategy is proposed and pursued to determine whether it is able to produce a superior complex circuit design using a commercial digital synthesis flow. Two 128 bit AES cores are synthesized from the novel sizing strategy and compared against a third AES core synthesized from a state-of-the-art subthreshold standard cell library used by ARM. Results show improvements in energy-per-cycle of up to 27.3% and frequency improvements of up to 10.25X. The novel subthreshold sizing strategy proves superior over a temperature range of 0 °C to 85 °C with a nominal (20 °C) improvement in energy-per-cycle of 24% and frequency improvement of 8.65X. A comparison to prior art is then performed. Valid cases are presented where the proposed sizing strategy would be a candidate to produce superior subthreshold circuits

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications
    corecore