283 research outputs found

    Gas Source Localization Strategies for Teleoperated Mobile Robots. An Experimental Analysis

    Get PDF
    Gas source localization (GSL) is one of the most important and direct applications of a gas sensitive mobile robot, and consists in searching for one or multiple volatile emission sources with a mobile robot that has improved sensing capabilities (i.e. olfaction, wind flow, etc.). This work adresses GSL by employing a teleoperated mobile robot, and focuses on which search strategy is the most suitable for this teleoperated approach. Four different search strategies, namely chemotaxis, anemotaxis, gas-mapping, and visual-aided search, are analyzed and evaluated according to a set of proposed indicators (e.g. accuracy, efficiency, success rate, etc.) to determine the most suitable one for a human-teleoperated mobile robot. Experimental validation is carried out employing a large dataset composed of over 150 trials where volunteer operators had to locate a gas-leak in a virtual environment under various and realistic environmental conditions (i.e. different wind flow patterns and gas source locations). We report different findings, from which we highlight that, against intuition, visual-aided search is not always the best strategy, but depends on the environmental conditions and the operator’s ability to understand how gas distributes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Improvement of the sensory and autonomous capability of robots through olfaction: the IRO Project

    Get PDF
    Proyecto de Excelencia Junta de Andalucía TEP2012-530Olfaction is a valuable source of information about the environment that has not been su ciently exploited in mobile robotics yet. Certainly, odor information can contribute to other sensing modalities, e.g. vision, to successfully accomplish high-level robot activities, such as task planning or execution in human environments. This paper describes the developments carried out in the scope of the IRO project, which aims at making progress in this direction by investigating mechanisms that exploit odor information (usually coming in the form of the type of volatile and its concentration) in problems like object recognition and scene-activity understanding. A distinctive aspect of this research is the special attention paid to the role of semantics within the robot perception and decisionmaking processes. The results of the IRO project have improved the robot capabilities in terms of efciency, autonomy and usefulness.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Enhancement of the Sensory Capabilities of Mobile Robots through Artificial Olfaction

    Get PDF
    La presente tesis abarca varios aspectos del olfato artificial u olfato robótico, la capacidad de percibir información sobre la composición del aire que rodea a un sistema automático. En primer lugar, se desarrolla una nariz electrónica, un instrumento que combina sensores de gas de bajas prestaciones con un algoritmo de clasificación para medir e identificar gases. Aunque esta tecnología ya existía previamente, se aplica un nuevo enfoque que busca reducir las dimensiones y consumo para poder instalarlas en robots móviles, a la vez que se aumenta el número de gases detectables mediante un diseño modular. Posteriormente, se estudia la estrategia óptima para encontrar fugas de gas con un robot equipado con este tipo de narices electrónicas. Para ello se llevan a cabos varios experimentos basados en teleoperación para entender como afectan los sensores del robot al éxito de la tarea, de lo cual se deriva finalmente un algoritmo para generar con robots autónomos mapas de gas de un entorno dado, el cual se inspira en el comportamiento humano, a saber, maximizar la información conocida sobre el entorno. La principal virtud de este método, además de realizar una exploración óptima del entorno, es su capacidad para funcionar en entornos muy complejos y sujetos a corrientes de vientos mediante un nuevo método que también se presenta en esta tesis. Finalmente, se presentan dos casos de aplicación en los que se identifica de forma automática con una nariz electrónica la calidad subjetiva del aire en entornos urbanos

    A Robotic Experiment Toward Understanding Human Gas-Source Localization Strategies

    Get PDF
    This paper describes an experiment for gas-source localization with a human-teleoperated mobile robot devised to gather data on how humans search for odor-sources. To that end, more than 150 repetitions of the search process are recorded for 69 test subjects, under 4 sensor configurations (including electronic nose, anemometer and video camera) and 4 scenarios (i.e. with different wind-flow conditions and gas-source position). The experiment has been carried out with a ROS-based simulator that allows driving the robot while recording data of interest (e.g. driving commands, robot localization, sensor measurements, groundtruth, etc.) for further analyzing the human process of gas-source searching, and computational fluid dynamics (CFD) to generate realistic and repeatable test conditions. The manuscript describes the different environmental parameters and sensor combinations of the experiment, and explains the methodology under which it was executed. The obtained dataset is publicly available at http://mapir.isa.uma.es/mapirwebsite/index.php/253-gsl-dataset.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Flexible Supervised Autonomy for Exploration in Subterranean Environments

    Full text link
    While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.Comment: Field Robotics special issue: DARPA Subterranean Challenge, Advancement and Lessons Learned from the Final

    Multi-mobile robot and avoidance obstacle to spatial mapping in indoor environment

    Get PDF
    The advancement of technology and techniques applied to robotics contributes to increasing the quality of life and safety of humanity. One of the most widespread applications of mobile robotics is related to monitoring indoor environments. However, due to factors such as the size of the environment impacting the monitoring response, battery autonomy, and autonomous navigation in environments with unknown obstacles, they are still significant challenges in the diffusion of mobile robotics in these areas. Strategy adopting multiple robots can overcome these challenges. This work presents an approach to use multi-robots in hazardous environments with gas leakage to perform spatial mapping of the gas concentration. Obstacles arranged in the environment are unknown to robots, then a fuzzy control approach is used to avoid the collision. As a result of this paper, spatial mapping of an indoor environment was carried out with multi-robots that reactively react to unknown obstacles considering a point gas leak with Gaussian dispersion.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020. Additionally, this work was supported in part by the National Counsel of Technological and Scientific Development of Brazil (CNPq), in part by the Coordination for the Improvement of Higher Level People (CAPES).info:eu-repo/semantics/publishedVersio

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance
    • …
    corecore