513 research outputs found

    Airborne chemical sensing with mobile robots

    Get PDF
    Airborne chemical sensing with mobile robots has been an active research areasince the beginning of the 1990s. This article presents a review of research work in this field,including gas distribution mapping, trail guidance, and the different subtasks of gas sourcelocalisation. Due to the difficulty of modelling gas distribution in a real world environmentwith currently available simulation techniques, we focus largely on experimental work and donot consider publications that are purely based on simulations

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 Versión preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Improvement of the sensory and autonomous capability of robots through olfaction: the IRO Project

    Get PDF
    Proyecto de Excelencia Junta de Andalucía TEP2012-530Olfaction is a valuable source of information about the environment that has not been su ciently exploited in mobile robotics yet. Certainly, odor information can contribute to other sensing modalities, e.g. vision, to successfully accomplish high-level robot activities, such as task planning or execution in human environments. This paper describes the developments carried out in the scope of the IRO project, which aims at making progress in this direction by investigating mechanisms that exploit odor information (usually coming in the form of the type of volatile and its concentration) in problems like object recognition and scene-activity understanding. A distinctive aspect of this research is the special attention paid to the role of semantics within the robot perception and decisionmaking processes. The results of the IRO project have improved the robot capabilities in terms of efciency, autonomy and usefulness.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Measuring gas concentration and wind intensity in a turbulent wind tunnel with a mobile robot

    Get PDF
    This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms

    Mapping multiple gas/odor sources in an uncontrolled indoor environment using a Bayesian occupancy grid mapping based method

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Robotics and Autonomous Systems 59 (2011): 988–1000, doi:10.1016/j.robot.2011.06.007.In this paper we address the problem of autonomously localizing multiple gas/odor sources in an indoor environment without a strong airflow. To do this, a robot iteratively creates an occupancy grid map. The produced map shows the probability each discrete cell contains a source. Our approach is based on a recent adaptation [15] to traditional Bayesian occupancy grid mapping for chemical source localization problems. The approach is less sensitive, in the considered scenario, to the choice of the algorithm parameters. We present experimental results with a robot in an indoor uncontrolled corridor in the presence of different ejecting sources proving the method is able to build reliable maps quickly (5.5 minutes in a 6 m x 2.1 m area) and in real time

    Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds

    Get PDF
    In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources

    On the use of autonomous unmanned vehicles in response to hazardous atmospheric release incidents

    Get PDF
    Recent events have induced a surge of interest in the methods of response to releases of hazardous materials or gases into the atmosphere. In the last decade there has been particular interest in mapping and quantifying emissions for regulatory purposes, emergency response, and environmental monitoring. Examples include: responding to events such as gas leaks, nuclear accidents or chemical, biological or radiological (CBR) accidents or attacks, and even exploring sources of methane emissions on the planet Mars. This thesis presents a review of the potential responses to hazardous releases, which includes source localisation, boundary tracking, mapping and source term estimation. [Continues.]</div

    Design and Implementation of a Mobile Robot for Carbon Monoxide Monitoring

    Get PDF
    The gas detection problem is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. The mobile robot used for gas detection has several advantages and can reduce danger for humans. In this study, we proposed an integration system for a mobile robot that can be used for carbon monoxide (CO) monitoring with different operating temperatures. The design and implementation of a mobile robot system that proposed consists of the onboard and ground stations. The proposed system can read CO gas concentration and temperature then send it wirelessly using an XBee module to the ground station. This system was also able to receive the command from the ground station to move the robot. The system provided real-time acquisition data that believed can be a useful tool for monitoring and can be applied for various purposes. The experimental results show that a combination of a mobile robot and environmental sensors can be used for environmental monitoring

    A Robotic Experiment Toward Understanding Human Gas-Source Localization Strategies

    Get PDF
    This paper describes an experiment for gas-source localization with a human-teleoperated mobile robot devised to gather data on how humans search for odor-sources. To that end, more than 150 repetitions of the search process are recorded for 69 test subjects, under 4 sensor configurations (including electronic nose, anemometer and video camera) and 4 scenarios (i.e. with different wind-flow conditions and gas-source position). The experiment has been carried out with a ROS-based simulator that allows driving the robot while recording data of interest (e.g. driving commands, robot localization, sensor measurements, groundtruth, etc.) for further analyzing the human process of gas-source searching, and computational fluid dynamics (CFD) to generate realistic and repeatable test conditions. The manuscript describes the different environmental parameters and sensor combinations of the experiment, and explains the methodology under which it was executed. The obtained dataset is publicly available at http://mapir.isa.uma.es/mapirwebsite/index.php/253-gsl-dataset.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Active Localization of Gas Leaks using Fluid Simulation

    Get PDF
    Sensors are routinely mounted on robots to acquire various forms of measurements in spatio-temporal fields. Locating features within these fields and reconstruction (mapping) of the dense fields can be challenging in resource-constrained situations, such as when trying to locate the source of a gas leak from a small number of measurements. In such cases, a model of the underlying complex dynamics can be exploited to discover informative paths within the field. We use a fluid simulator as a model, to guide inference for the location of a gas leak. We perform localization via minimization of the discrepancy between observed measurements and gas concentrations predicted by the simulator. Our method is able to account for dynamically varying parameters of wind flow (e.g., direction and strength), and its effects on the observed distribution of gas. We develop algorithms for off-line inference as well as for on-line path discovery via active sensing. We demonstrate the efficiency, accuracy and versatility of our algorithm using experiments with a physical robot conducted in outdoor environments. We deploy an unmanned air vehicle (UAV) mounted with a CO2 sensor to automatically seek out a gas cylinder emitting CO2 via a nozzle. We evaluate the accuracy of our algorithm by measuring the error in the inferred location of the nozzle, based on which we show that our proposed approach is competitive with respect to state of the art baselines.Comment: Accepted as a journal paper at IEEE Robotics and Automation Letters (RA-L
    corecore