127 research outputs found

    Hyperspectral and Hypertemporal Longwave Infrared Data Characterization

    Get PDF
    The Army Research Lab conducted a persistent imaging experiment called the Spectral and Polarimetric Imagery Collection Experiment (SPICE) in 2012 and 2013 which focused on collecting and exploiting long wave infrared hyperspectral and polarimetric imagery. A part of this dataset was made for public release for research and development purposes. This thesis investigated the hyperspectral portion of this released dataset through data characterization and scene characterization of man-made and natural objects. First, the data were contrasted with MODerate resolution atmospheric TRANsmission (MODTRAN) results and found to be comparable. Instrument noise was characterized using an in-scene black panel, and was found to be comparable with the sensor manufacturer\u27s specication. The temporal and spatial variation of certain objects in the scene were characterized. Temporal target detection was conducted on man-made objects in the scene using three target detection algorithms: spectral angle mapper (SAM), spectral matched lter (SMF) and adaptive coherence/cosine estimator (ACE). SMF produced the best results for detecting the targets when the training and testing data originated from different time periods, with a time index percentage result of 52.9%. Unsupervised and supervised classication were conducted using spectral and temporal target signatures. Temporal target signatures produced better visual classication than spectral target signature for unsupervised classication. Supervised classication yielded better results using the spectral target signatures, with a highest weighted accuracy of 99% for 7-class reference image. Four emissivity retrieval algorithms were applied on this dataset. However, the retrieved emissivities from all four methods did not represent true material emissivity and could not be used for analysis. This spectrally and temporally rich dataset enabled to conduct analysis that was not possible with other data collections. Regarding future work, applying noise-reduction techniques before applying temperature-emissivity retrieval algorithms may produce more realistic emissivity values, which could be used for target detection and material identification

    Comparison of Methane Plume Detection Using Shortwave and Longwave Infrared Hyperspectral Sensors Under Varying Environmental Conditions

    Get PDF
    Methane is a prevalent greenhouse gas with potent heat trapping capabilities, but methane emissions can be difficult to detect and track. Hyperspectral imagery is an effective method of detection which can locate methane emission sources in order to mitigate leaks, as well as provide accountability for reaching emissions reduction goals. Because of methane’s absorption features in the infrared, both shortwave infrared (SWIR) and longwave infrared (LWIR) hyperspectral sensors have been used to accurately detect methane plumes. However, surface, environmental and atmospheric background conditions can cause methane detectability to vary. This study compared methane detectability under varying environmental conditions for two airborne hyperspectral sensors: AVIRIS-NG in the SWIR and HyTES in the LWIR. For this trade study, we modeled methane plume detection under a wide variety of precisely known conditions by making use of synthetic images which were comprised of MODTRAN-generated radiance curves. We applied a matched filter to these images to assess detection accuracy, and used these results to identify the conditions which have the greatest impact on detectability in the SWIR and LWIR: surface reflectance, surface temperature, and water vapor concentration. We then computed the specific boundaries on these conditions which make methane most detectable for each instrument. The results of this trade study can help inform decision making about which sensors are most useful for various types of methane emission analysis, such as leak detection, plume mapping, and emissions rate quantification

    Thermal infrared work at ITC:a personal, historic perspective of transitions

    Get PDF

    High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    Get PDF
    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1–2 km), and high spatial resolution (∼ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH_4, H_2S, NH_3, NO_2, and SO_2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions

    An Examination of Environmental Applications for Uncooled Thermal Infrared Remote Sensing Instruments

    Get PDF
    Advancements in system design for thermal instruments require assessment of potential environmental applications and appropriate data processing techniques. A novel multi-band thermal imaging system was proposed by DRS Leonardo for the National Aeronautics and Space Administration Earth Science Technology Office Instrument Incubator Program, for which these criteria were assessed. The Multi-Band Uncooled Radiometer Imager (MURI) is a six spectral channel instrument designed to collect images in the thermal infrared, specifically in the range of 7.5 to 12.5 μm. The work detailed in this thesis characterizes the ability of a thermal imager with an uncooled microbolometer focal plane array to provide valuable data for environmental science applications. Here, a pair of studies using simulated data demonstrates the ability of a multispectral instrument such as MURI to detect enhanced levels of atmospheric methane using a novel approach that performs similarly to a state of the art algorithm when applied to MURI data. The novel method is evaluated using a controlled concentration simulated dataset to determine the extent of its detection capabilities and its dependence on atmospheric conditions. The methane investigations reveal the system is capable of detecting a 20 m thick CH4 plume of 10-20 ppm above background levels when column water vapor is low using both the NDMI and matched filter approaches. Additionally, land surface temperature and emissivity retrieval techniques were applied to experimental MURI data recorded during initial test flights to assess their accuracy with MURI data. Utilizing split window and Temperature Emissivity Separation make this examination distinct as this establishes that proven methods can be applied to uncooled multiband imager data. Application of these methods to MURI data demonstrated the system is capable of temperature retrievals with Root Mean Square Errors of less than 1 K to measured reference values and surface emissivity retrievals within 2% of reference database values. The definition and application of the Normalized Differential Methane Index in this thesis demonstrates a novel approach for detection of enhanced plumes of methane utilizing a multispectral system with only a single band allocated to methane absorption features

    Physics-constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios

    Get PDF
    Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using collected data. These deep learning-based compensation algorithms resulted in comparable detection performance to established methods while accelerating the image processing chain by 8X

    Radiometric modeling of mechanical draft cooling towers to assist in the extraction of their absolute temperature from remote thermal imagery

    Get PDF
    Determination of the internal temperature of a mechanical draft cooling tower (MDCT) from remotely-sensed thermal imagery is important for many applications that provide input to energy-related process models. The problem of determining the temperature of an MDCT is unique due to the geometry of the tower and due to the exhausted water vapor plume. The radiance leaving the tower is dependent on the optical and thermal properties of the tower materials (i.e., emissivity, BRDF, temperature, etc.) as well as the internal geometry of the tower. The tower radiance is then propagated through the exhaust plume and through the atmosphere to arrive at the sensor. The expelled effluent from the tower consists of a warm plume with a higher water vapor concentration than the ambient atmosphere. Given that a thermal image has been atmospherically compensated, the remaining sources of error in extracted tower temperature due to the exhausted plume and the tower geometry must be accounted for. A temperature correction factor due to these error sources is derived through the use of three-dimensional radiometric modeling. A range of values for each important parameter are modeled to create a target space (i.e., look-up table) that predicts the internal MDCT temperature for every combination of parameter values. The look-up table provides data for the creation of a fast-running parameterized model. This model, along with user knowledge of the scene, provides a means to convert the image-derived apparent temperature into the estimated absolute temperature of an MDCT

    High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    Get PDF
    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1–2 km), and high spatial resolution (∼ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH_4, H_2S, NH_3, NO_2, and SO_2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions

    Leveraging very-high spatial resolution hyperspectral and thermal UAV imageries for characterizing diurnal indicators of grapevine physiology

    Get PDF
    Efficient and accurate methods to monitor crop physiological responses help growers better understand crop physiology and improve crop productivity. In recent years, developments in unmanned aerial vehicles (UAV) and sensor technology have enabled image acquisition at very-high spectral, spatial, and temporal resolutions. However, potential applications and limitations of very-high-resolution (VHR) hyperspectral and thermal UAV imaging for characterization of plant diurnal physiology remain largely unknown, due to issues related to shadow and canopy heterogeneity. In this study, we propose a canopy zone-weighting (CZW) method to leverage the potential of VHR (≤9 cm) hyperspectral and thermal UAV imageries in estimating physiological indicators, such as stomatal conductance (Gs) and steady-state fluorescence (Fs). Diurnal flights and concurrent in-situ measurements were conducted during grapevine growing seasons in 2017 and 2018 in a vineyard in Missouri, USA. We used neural net classifier and the Canny edge detection method to extract pure vine canopy from the hyperspectral and thermal images, respectively. Then, the vine canopy was segmented into three canopy zones (sunlit, nadir, and shaded) using K-means clustering based on the canopy shadow fraction and canopy temperature. Common reflectance-based spectral indices, sun-induced chlorophyll fluorescence (SIF), and simplified canopy water stress index (siCWSI) were computed as image retrievals. Using the coefficient of determination (R2) established between the image retrievals from three canopy zones and the in-situ measurements as a weight factor, weighted image retrievals were calculated and their correlation with in-situ measurements was explored. The results showed that the most frequent and the highest correlations were found for Gs and Fs, with CZW-based Photochemical reflectance index (PRI), SIF, and siCWSI (PRICZW, SIFCZW, and siCWSICZW), respectively. When all flights combined for the given field campaign date, PRICZW, SIFCZW, and siCWSICZW significantly improved the relationship with Gs and Fs. The proposed approach takes full advantage of VHR hyperspectral and thermal UAV imageries, and suggests that the CZW method is simple yet effective in estimating Gs and Fs
    • …
    corecore