37 research outputs found

    Improved reversible and quantum circuits for Karatsuba-based integer multiplication

    Get PDF
    Integer arithmetic is the underpinning of many quantum algorithms, with applications ranging from Shor\u27s algorithm over HHL for matrix inversion to Hamiltonian simulation algorithms. A basic objective is to keep the required resources to implement arithmetic as low as possible. This applies in particular to the number of qubits required in the implementation as for the foreseeable future this number is expected to be small. We present a reversible circuit for integer multiplication that is inspired by Karatsuba\u27s recursive method. The main improvement over circuits that have been previously reported in the literature is an asymptotic reduction of the amount of space required from O(n^1.585) to O(n^1.427). This improvement is obtained in exchange for a small constant increase in the number of operations by a factor less than 2 and a small asymptotic increase in depth for the parallel version. The asymptotic improvement are obtained from analyzing pebble games on complete ternary trees

    Time-space complexity of quantum search algorithms in symmetric cryptanalysis: applying to AES and SHA-2

    Get PDF
    Performance of cryptanalytic quantum search algorithms is mainly inferred from query complexity which hides overhead induced by an implementation. To shed light on quantitative complexity analysis removing hidden factors, we provide a framework for estimating time-space complexity, with carefully accounting for characteristics of target cryptographic functions. Processor and circuit parallelization methods are taken into account, resulting in the time-space trade-off curves in terms of depth and qubit. The method guides howto rank different circuit designs in order of their efficiency. The framework is applied to representative cryptosystems NIST referred to as a guideline for security parameters, reassessing the security strengths of AES and SHA-2

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore