65 research outputs found

    Space Reclamation for Uncoordinated Checkpointing in Message-Passing Systems

    Get PDF
    Checkpointing and rollback recovery are techniques that can provide efficient recovery from transient process failures. In a message-passing system, the rollback of a message sender may cause the rollback of the corresponding receiver, and the system needs to roll back to a consistent set of checkpoints called recovery line. If the processes are allowed to take uncoordinated checkpoints, the above rollback propagation may result in the domino effect which prevents recovery line progression. Traditionally, only obsolete checkpoints before the global recovery line can be discarded, and the necessary and sufficient condition for identifying all garbage checkpoints has remained an open problem. A necessary and sufficient condition for achieving optimal garbage collection is derived and it is proved that the number of useful checkpoints is bounded by N(N+1)/2, where N is the number of processes. The approach is based on the maximum-sized antichain model of consistent global checkpoints and the technique of recovery line transformation and decomposition. It is also shown that, for systems requiring message logging to record in-transit messages, the same approach can be used to achieve optimal message log reclamation. As a final topic, a unifying framework is described by considering checkpoint coordination and exploiting piecewise determinism as mechanisms for bounding rollback propagation, and the applicability of the optimal garbage collection algorithm to domino-free recovery protocols is demonstrated

    Checkpointing in hybrid distributed systems

    Get PDF
    2003-2004 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    RADIC II : a fault tolerant architecture with flexible dynamic redundancy

    Get PDF
    The demand for computational power has been leading the improvement of the High Performance Computing (HPC) area, generally represented by the use of distributed systems like clusters of computers running parallel applications. In this area, fault tolerance plays an important role in order to provide high availability isolating the application from the faults effects. Performance and availability form an undissociable binomial for some kind of applications. Therefore, the fault tolerant solutions must take into consideration these two constraints when it has been designed. In this dissertation, we present a few side-effects that some fault tolerant solutions may presents when recovering a failed process. These effects may causes degradation of the system, affecting mainly the overall performance and availability. We introduce RADIC-II, a fault tolerant architecture for message passing based on RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers) architecture. RADIC-II keeps as maximum as possible the RADIC features of transparency, decentralization, flexibility and scalability, incorporating a flexible dynamic redundancy feature, allowing to mitigate or to avoid some recovery side-effects.La demanda de computadores más veloces ha provocado el incremento del área de computación de altas prestaciones, generalmente representado por el uso de sistemas distribuidos como los clusters de computadores ejecutando aplicaciones paralelas. En esta área, la tolerancia a fallos juega un papel muy importante a la hora de proveer alta disponibilidad, aislando los efectos causados por los fallos. Prestaciones y disponibilidad componen un binomio indisociable para algunos tipos de aplicaciones. Por eso, las soluciones de tolerancia a fallos deben tener en consideración estas dos restricciones desde el momento de su diseño. En esta disertación, presentamos algunos efectos colaterales que se puede presentar en ciertas soluciones tolerantes a fallos cuando recuperan un proceso fallado. Estos efectos pueden causar una degradación del sistema, afectando las prestaciones y disponibilidad finales. Presentamos RADIC-II, una arquitectura tolerante a fallos para paso de mensajes basada en la arquitectura RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers). RADIC-II mantiene al máximo posible las características de transparencia, descentralización, flexibilidad y escalabilidad existentes en RADIC, e incorpora una flexible funcionalidad de redundancia dinámica, que permite mitigar o evitar algunos efectos colaterales en la recuperación

    A Survey of Checkpointing Algorithms in Mobile Ad Hoc Network

    Get PDF
    Checkpoint is defined as a fault tolerant technique that is a designated place in a program at which normal processing is interrupted specifically to preserve the status information necessary to allow resumption of processing at a later time. If there is a failure, computation may be restarted from the current checkpoint instead of repeating the computation from beginning. Checkpoint based rollback recovery is one of the widely used technique used in various areas like scientific computing, database, telecommunication and critical applications in distributed and mobile ad hoc network. The mobile ad hoc network architecture is one consisting of a set of self configure mobile hosts capable of communicating with each other without the assistance of base stations. The main problems of this environment are insufficient power and limited storage capacity, so the checkpointing is major challenge in mobile ad hoc network. This paper presents the review of the algorithms, which have been reported for checkpointing approaches in mobile ad hoc network

    Scalable group-based checkpoint/restart for large-scale message-passing systems

    Get PDF
    The ever increasing number of processors used in parallel computers is making fault tolerance support in large-scale parallel systems more and more important. We discuss the inadequacies of existing system-level checkpointing solutions for message-passing applications as the system scales up. We analyze the coordination cost and blocking behavior of two current MPI implementations with checkpointing support. A group-based solution combining coordinated checkpointing and message logging is then proposed. Experiment results demonstrate its better performance and scalability than LAM/MPI and MPICH-VCL. To assist group formation, a method to analyze the communication behaviors of the application is proposed. ©2008 IEEE.published_or_final_versio

    Checkpointing of parallel applications in a Grid environment

    Get PDF
    The Grid environment is generic, heterogeneous, and dynamic with lots of unreliable resources making it very exposed to failures. The environment is unreliable because it is geographically dispersed involving multiple autonomous administrative domains and it is composed of a large number of components. Examples of failures in the Grid environment can be: application crash, Grid node crash, network failures, and Grid system component failures. These types of failures can affect the execution of parallel/distributed application in the Grid environment and so, protections against these faults are crucial. Therefore, it is essential to develop efficient fault tolerant mechanisms to allow users to successfully execute Grid applications. One of the research challenges in Grid computing is to be able to develop a fault tolerant solution that will ensure Grid applications are executed reliably with minimum overhead incurred. While checkpointing is the most common method to achieve fault tolerance, there is still a lot of work to be done to improve the efficiency of the mechanism. This thesis provides an in-depth description of a novel solution for checkpointing parallel applications executed on a Grid. The checkpointing mechanism implemented allows to checkpoint an application at regions where there is no interprocess communication involved and therefore reducing the checkpointing overhead and checkpoint size

    Optimal Message Log Reclamation for Independent Checkpointing

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Aeronautics and Space Administration / NASA NAG 1-613Department of the Navy managed by the Office of the Chief of Naval Research / N00014-91-J-128
    corecore