1,424 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Gamut extension algorithm development and evaluation for the mapping of standard image content to wide-gamut displays

    Get PDF
    Wide-gamut display technology has provided an excellent opportunity to produce visually pleasing images, more so than in the past. However, through several studies, including Laird and Heynderick, 2008, it was shown that linearly mapping the standard sRGB content to the gamut boundary of a given wide-gamut display may not result in optimal results. Therefore, several algorithms were developed and evaluated for observer preference, including both linear and sigmoidal expansion algorithms, in an effort to define a single, versatile gamut expansion algorithm (GEA) that can be applied to current display technology and produce the most preferable images for observers. The outcome provided preference results from two displays, both of which resulted in large scene dependencies. However, the sigmoidal GEAs (SGEA) were competitive with the linear GEAs (LGEA), and in many cases, resulted in more pleasing reproductions. The SGEAs provide an excellent baseline, in which, with minor improvements, could be key to producing more impressive images on a wide-gamut display

    High Dynamic Range (HDR) Display Perception

    Get PDF
    Displays have undergone a huge development in the last several decades. From cathode-ray tube (CRT), liquid crystal display (LCD), to organic light-emitting diode (OLED), even Q-OLED, the new configurations of the display bring more and more functions into industry and daily life. In the recent several years, high dynamic range (HDR) displays become popular. HDR displays usually refer to that the black level of the display is darker and the peak being brighter compared with the standard dynamic range (SDR) display. Traditionally, the peak luminance level can be used as the white in characterization and calibration. However, for HDR displays, the peak luminance is higher than the traditional diffuse white level. Exploration of the perceptual diffuse white in HDR image when presented in displays is proposed, which can be beneficial to the characterizing and the optimizing the usage of the HDR display. Moreover, in addition to the ``diffuse white , 3D color gamut volume can be calculated in some specific color appearance models. Calculation and modeling of the 3D color gamut volume can be very useful for display design and better characterizing display color reproduction capability. Furthermore, the perceptional color gamut volume can be measured through psychophysical experiments. Comparison between the perceptional color gamut volume and the theoretical 3D gamut volume calculations will reveal some insights for optimizing the usage of HDR displays. Another advantage of the HDR display is its darker black compared with the SDR display. Compared with the real black object, what level of black is `perfect\u27 enough in displays? Experiments were proposed and conducted to evaluate that if the HDR display is capable of showing ``perfect black for different types of background images/patterns. A glare-based model was proposed to predict the visual ``perfect black. Additionally, the dynamic range of human vision system is very large. However, the simultaneous dynamic range of human vision system is much smaller and is important for the fine tuning usage of HDR displays. The simultaneous dynamic range was measured directly for different stimulus sizes. Also, it was found that the simultaneous dynamic range was peak luminance level dependent. A mathematical model was proposed based on the experimental data to predict the simultaneous dynamic range. Also the spatial frequency effect of the target pattern on the simultaneous dynamic range was measured and modeled. The four different assessments about HDR displays perception would provide experimental data and models for a better understanding of HDR perception and tuning of the HDR display

    A Paradigm for color gamut mapping of pictorial images

    Get PDF
    In this thesis, a paradigm was generated for color gamut mapping of pictorial images. This involved the development and testing of: 1.) a hue-corrected version of the CIELAB color space, 2.) an image-dependent sigmoidal-lightness-rescaling process, 3.) an image-gamut- based chromatic-compression process, and 4.) a gamut-expansion process. This gamut-mapping paradigm was tested against some gamut-mapping strategies published in the literature. Reproductions generated by gamut mapping in a hue-corrected CIELAB color space more accurately preserved the perceived hue of the original scenes compared to reproductions generated using the CIELAB color space. The results of three gamut-mapping experiments showed that the contrast-preserving nature of the sigmoidal-lightness-remapping strategy generated gamut-mapped reproductions that were better matches to the originals than reproductions generated using linear-lightness-compression functions. In addition, chromatic-scaling functions that compressed colors at a higher rate near the gamut surface and less near the achromatic axis produced better matches to the originals than algorithms that performed linear chroma compression throughout color space. A constrained gamut-expansion process, similar to the inverse of the best gamut-compression process found in this experiment, produced reproductions preferred over an expansion process utilizing unconstrained linear expansion

    Derivation and modelling hue uniformity and development of the IPT color space

    Get PDF
    Metric color spaces have been determined to be significantly non-uniform in the hue attribute of color appearance. Several independent sources have confirmed the non-uniformity. A data set was obtained during the course of this thesis work that contains the largest sampling of color space to date which can be used to compare models of color appearance. The data set obtained was compared to existing data sets and found to correspond closely. Lookup table methods were employed to test significant differences between data sets. A simple modeling approach was taken based on commonly understood color space models and knowledge of the visual system. Several color spaces can be derived using the simple model, and one was chosen that models hue uniformity very well and has other desirable attributes. This new color space is named IPT. Many visual data sets were plotted in the IPT color space and all show improved performance over industry standard color spaces. The IPT color space has applications in color data representation, gamut mapping, and color appearance modeling

    Color space selection for JPEG image compression

    Get PDF
    The Joint Photographic Experts Group\u27s image compression algorithm has been shown to be a very efficient and powerful method of compressing images. However, there is little substantive information about which color space should be utilized when implementing the JPEG algorithm. Currently, the JPEG algorithm is set up for use with any three component color space. The objective of this research was to determine whether or not the color space selected will significantly improve image compression capabilities. The RGB, XYZ, YIQ, CIELAB, CIELUV, and CIELAB LCh color spaces were examined and compared. Both numerical measures and psychophysical techniques were used to assess the results. The final results indicate that the device space, RGB, is the worst color space to compress images. In comparison, the nonlinear transforms of the device space, CIELAB and CIELUV, are the best color spaces to compress images. The XYZ, YIQ, and CIELAB LCh color spaces resulted in intermediate levels of compression

    Human-centered display design : balancing technology & perception

    Get PDF

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers
    • …
    corecore