5,490 research outputs found

    Practice makes perfect – gamification of a competitive learning experience

    Get PDF
    The ability to provide and implement software solutions is a fundamental component of a computer scientist curriculum. Commonly referred to as the ability to program, this task involves the development of programs to address everyday problems. Over the last decade teaching practices have evolved alongside programming languages to facilitate the learning process. While abstracting the level of understanding has helped students with the fundamentals of software development, issues related to students’ engagement and motivation are still not adequately addressed. With motivation being a vital component of the students’ life cycle and at the basis of their engagement, the concept of software engineering introduced in the class needs to be revised and become more engaging so as to be practised thoroughly by the students. To address these challenges, educators have devised numerous frameworks to allow students to hone their programming skills. The idea of embedding gaming aspects into the learning cycle has led to the development of techniques such as serious games and game-based learning, while more recent techniques have been unified under the term gamification. Several researchers have incorporated the gamification concept into computer science classes in order to improve students’ engagement with the teaching material, with early evaluations confirming the effectiveness of this approach. The present study focuses on the use of a gamification platform to create stimulating content and increase motivation. Students were presented with a new gamification system designed to attract and hold their attention through a number of programming challenges in the form of a contest. The results of the experiment demonstrate the students’ behavioural changes towards a deeper cognitive engagement. The paper then further discusses the challenges that have arisen in this new learning environment, such as demotivation of students with low contest rankings. Teaching how to write good software has been part of an ongoing debate for the last decade. With student motivation being a central component, this paper discusses the use of a gamification environment to engage students with the teaching material and reinforce the concepts of software engineering introduced in class

    Learning computing heritage through gaming – whilst teaching digital development through history

    Get PDF
    This paper analyses the potential of computer games and interactive projects within the learning programmes for cultural heritage institutions through our experiences working in partnership between higher education and a museum. Gamification is cited as a key disruptive technology for the business and enterprise community, and developments in games technology are also driving the expansion of digital media into all different screen spaces, and various platforms. Our research aims to take these as beneficial indicators for pedagogic development, using gaming to support knowledge transfer related to a museum setting, and using the museum as a key scenario for our students to support the practice of game development. Thus gamification is applied as both a topic and a methodology for educational purposes

    Pros and cons gamification and gaming in classroom

    Full text link
    The aim of the current work is to assess the challenges that gamification in education are facing nowadays. Benefits and disadvantages of using gamification in classroom are both discussed to offer a clearer view on the impact of using gamification within learning process. Exploratory study cases are provided to investigate the relation between motivation and engagement of the students and gamification in training. Following this idea, a survey was conducted to assess how students behavior and motivation is affected by introducing a single, specific gamification element during a semester learning process. To stimulate competition among students, a ranking type plugin was introduced within the university learning management system used for extramural education. The results prove that motivation decreases by comparison to the previous semester.Comment: 7 pages, 3 figure

    SIMNET: simulation-based exercises for computer net-work curriculum through gamification and augmented reality

    Get PDF
    Gamification and Augmented Reality techniques, in recent years, have tackled many subjects and environments. Its implementation can, in particular, strengthen teaching and learning processes in schools and universities. Therefore, new forms of knowledge, based on interactions with objects, contributing game, experimentation and collaborative work. Through the technologies mentioned above, we intend to develop an application that serves as a didactic tool, giving support in the area of Computer Networks. This application aims to stand out in simulated controlled environments to create computer networks, taking into ac-count the necessary physical devices and the different physical and logical topologies. The main goal is to enrich the students’ learning experiences and contrib-ute to teacher-student interaction, through collaborative learning provided by the tool, minimizing the need for expensive equipment in learning environments.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Training Competences in Industrial Risk Prevention with Lego® Serious Play®: A Case Study

    Get PDF
    This paper proposes the use of the Lego® Serious Play® (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017–2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of “gamification” dynamics with Lego® Serious Play®. In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams.Spanish Ministry of Science, Innovation and Universities / European Social Fund: Ramón y Cajal contract (RYC-2017-22222

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities

    Training Competences in Industrial Risk Prevention with Lego (R) Serious Play (R): A Case Study

    Get PDF
    This paper proposes the use of the Lego (R) Serious Play (R) (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017-2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of "gamification" dynamics with Lego (R) Serious Play (R). In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams
    corecore